簡易檢索 / 詳目顯示

研究生: 曾之藩
Zhi-fan Zeng
論文名稱: 氮化鉻銅奈米複合薄膜之耐蝕、抗菌與熱處理性質
The corrosion resistance, antibacterial and annealing properties of Cr-Cu-N nanocomposites thin films
指導教授: 王朝正
Chaur-jeng Wang
口試委員: 李志偉
Jyh-wei Lee
周賢鎧
Shyan-kay Jou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 100
中文關鍵詞: 脈衝直流磁控濺鍍腐蝕抗菌退火熱處理Cr-Cu-N奈米複合薄膜
外文關鍵詞: Cr-Cu-N nanocomposite thin films, magnetron sputtering pulsed DC reactive, corrosion, antibacterial, annealing
相關次數: 點閱:199下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

摘要
氮化鉻薄膜具有高硬度、較佳耐磨耗性與抗腐蝕能力,因此已在
模具產業中廣泛被使用;而在氮化鉻薄膜中加入適量的銅元素又可以
有效提高薄膜之機械性質。本研究採用反應式雙極非對稱脈衝直流磁
控濺鍍法沉積含銅量範圍自1.6 at.%到24.1 at.%之Cr-Cu-N 奈米複合
薄膜,並分別進行機械性質測試、氯化鈉水溶液中之抗腐蝕性、抑制
大腸桿菌能力及退火熱處理之性質的研究。Cr-Cu-N薄膜在硬度分析
中,可發現到含銅量15.3at.%時,其硬度值可達到最高值。抑菌實驗
發現薄膜消滅大腸桿菌的能力隨著銅含量的增加而提高,主要是由於
足夠多的Cu離子釋出所致。Cr-Cu-N薄膜在NaCl水溶液中因大量的銅
造成薄膜局部的腐蝕,隨著薄膜中銅含量增加其抗腐蝕性會明顯的降
低。Cr-Cu-N薄膜經退火熱處理後,其表面會有氧化生成物的產生,
生成物與其薄膜中的含銅量及退火的溫度有所關,薄膜硬度值也會受
到銅含量以及退火溫度的影響而變化。


The CrN coating had high hardness, low scratch coefficient and
good antibacterial properties. Therefore, the CrN coatings have been used
widely in the molding industrial. The addition of Cu into the CrN thin
film will further improve the mechanical properties of coating effectively.
In this work, the Cr-Cu-N nanocomposite thin films with Cu content
ranging from 1.6 to 24.1 at.% have been deposited by a bipolar
asymmetric pulsed DC reactive magnetron sputtering system. The
mechanical properties, corrosion behavior and antibacterial test of
Cr-Cu-N thin films with different Cu content were investigated. A
combination of high hardness for the Cr-Cu-N coating containing 15.2
at.%. It was observed that the antibacterial rate increased with the
increasing Cu content in the coating, which was due to sufficient amount
of Cu ions released. The corrosion resistance of Cr-Cu-N thin films is
decreased as the Cu content increased in the NaCl aqueous solution. The
copper oxide is produced on the surface of thin film after annealed. The
hardness is also effected with different Cu contain and annealing
temperature after annealed

目錄 第一章 序論........................................................1 1.1前言.......................................................1 1.2研究動機與目的.......................................................2 第二章 文獻回顧.......................................................3 2.1氮化鉻薄膜特性.......................................................3 2.2氮化鉻銅奈米複合薄膜的特性.......................................................5 2.3薄膜抗菌研究.......................................................9 2.4薄膜電化學腐蝕......................................................12 第三章 實驗方法......................................................16 3.1實驗流程......................................................16 3.2鍍膜方法與步驟......................................................19 3.2.2基材試片處理......................................................19 3.2.3濺鍍薄膜步驟......................................................19 3.3.2表面及截面型態分析......................................................22 3.3.3晶相結構分析......................................................23 3.3.4硬度分析......................................................23 3.3.5殘留應力分析......................................................26 3.4 抑菌實驗分析......................................................26 3.5電化學腐蝕分析......................................................27 3.6退火改質實驗......................................................29 第四章 結果與討論......................................................31 4.1不同銅含量之Cr-Cu-N奈米複合薄膜性質分析......................................................31 4.1.1相及微結構分析......................................................31 4.1.1.2相分析......................................................34 4.1.1.3微結構分析......................................................36 4.1.2機械性質......................................................45 4.1.2.1硬度......................................................45 4.1.2.2殘留應力......................................................46 4.1.3 抑菌實驗分析 ...............................................47 4.1.4電化學腐蝕實驗...................................................... 51 4.2 Cr-Cu-N薄膜在不同溫度下退火處理後性質分析............................ 63 4.2.1晶相及微結構的分析.................................................. 64 4.2.1.1微結構分析........................................................ 64 4.2.1.1.2 450 ℃退火處理................................................. 67 4.2.1.1.3 500 ℃退火處理................................................. 70 4.2.1.2表面形貌分析...................................................... 73 4.2.1.3相及成分分析...................................................... 81 4.2.2硬度試驗............................................................ 88 第五章 結論.............................................................. 90 參考文獻................................................................. 92 圖目錄 圖2-1、CrN薄膜其氮氣流率與硬度關係圖......................................5 圖2-2、奈米複合薄膜之結構示意圖.......................................... .7 圖2-3、(a)Cr-Cu-N奈米複合薄膜的硬度與基材偏壓的關係(b) Cr-Cu-N奈米複合薄 膜的晶粒尺寸與基材加熱溫度的關係圖....................................... .7 圖2-4、Cr-Cu-N奈米複合薄膜的硬度與銅含量的關係........................... .7 圖2-5、Ta-Cu-N奈米複合薄膜的硬度與銅含量的關係........................... .8 圖2-6、Al-Cu-N複合薄膜截面圖............................................. .8 圖2-7、(○)Ti1-xAlxN與(□)Ti1-x-yAlxSiyN其晶粒尺度與硬度關係圖........... .9 圖2-8、Ti-Cu-N、Mo-Cu-N與Cr-Cu-N磨耗速率比較............................. .9 圖2-9、Ti-Cu-N薄膜抑菌實驗............................................... 11 圖2-10、Cr-Cu-N薄膜抑菌率結果............................................ 11 圖2-11、CrN與Cr2N動電位極化曲線圖........................................ 14 圖2-12、Ti-Al-N複合薄膜電化學腐蝕表面.................................... 14 圖2-13、TiN複合薄膜電化學腐蝕機制示意圖.................................. 15 圖3-1、鍍膜時靶材與試片位置示意圖........................................ 16 圖3-2、實驗流程圖........................................................ 17 圖3-3、脈衝直流磁控濺鍍機台.............................................. 18 圖3-4、脈衝直流磁控濺鍍機台腔體配置圖.................................... 18 圖3-5、Berkovich探針幾何形狀............................................. 25 圖3-6、典型加卸載曲線.................................................... 25 圖3-7、電化學實驗示意圖.................................................. 29 圖3-8、退火溫度示意圖.................................................... 30 圖4-1、鍍覆於矽基板之Cr-Cu-N薄膜元素比例圖............................... 33 圖4-2、鍍覆於矽晶片不同銅含量之Cr-Cu-N薄膜X光繞射圖...................... 35 圖4-3、鍍覆於矽晶片之Cr-Cu-N薄膜的晶粒尺度與銅含量關係圖................. 36 圖4-4、A1試片表面(a)二維及(b)三維形貌.................................... 37 圖4-5、A2試片表面(a)二維及(b)三維形貌.................................... 37 圖4-6、A3試片表面(a)二維及(b)三維形貌.................................... 38 圖4-7、A4試片表面(a)二維及(b)三維形貌.................................... 38 圖4-8、A5試片表面(a)二維及(b)三維形貌.................................... 39 圖4-9、A5試片表面(a)二維及(b)三維形貌.................................... 39 圖4-10、Cr-Cu-N薄膜表面粗糙度與銅含量關係圖.............................. 40 圖4-11、A1試片薄膜截面型態............................................... 42 圖4-12、A2試片薄膜截面型態............................................... 42 圖4-13、A3試片薄膜截面型態............................................... 43 圖4-14、A4試片薄膜截面型態............................................... 43 圖4-15、A5試片薄膜截面型態............................................... 44 圖4-16、A6試片薄膜截面型態............................................... 45 圖4-17、Cr-Cu-N硬度及彈性係數與銅含量關係圖.............................. 46 圖4-18、Cr-Cu-N薄膜殘留應力與銅靶功率關係圖.............................. 48 圖4-19、Cr-Cu-N薄膜菌落與抑菌率比較圖.................................... 50 圖4-20、A3試片於抑菌實驗後表面成分分析區域............................... 51 圖4-21、A1薄膜在0.89 wt.%NaCl水溶液中之開路電位曲線圖.................... 53 圖4-22、A2薄膜在0.89 wt.%NaCl水溶液中之開路電位曲線圖.................... 54 圖4-23、A3薄膜在0.89 wt.%NaCl水溶液中之開路電位曲線圖.................... 54 圖4-24、A4薄膜在0.89 wt.%NaCl水溶液中之開路電位曲線圖.................... 55 圖4-25、A5薄膜在0.89 wt.%NaCl水溶液中之開路電位曲線圖.................... 55 圖4-26、A6薄膜在0.89 wt.%NaCl水溶液中之開路電位曲線圖.................... 56 圖4-27、A1薄膜在0.89 wt.%NaCl水溶液中之動電位極化曲線圖.................. 56 圖4-28、A2薄膜在0.89 wt.%NaCl水溶液中之動電位極化曲線圖.................. 57 圖4-29、A3薄膜在0.89 wt.%NaCl水溶液中之動電位極化曲線圖.................. 57 圖4-30、A4薄膜在0.89 wt.%NaCl水溶液中之動電位極化曲線圖.................. 58 圖4-31、A5薄膜在0.89 wt.%NaCl水溶液中之動電位極化曲線圖.................. 58 圖4-32、A6薄膜在0.89 wt.%NaCl水溶液中之動電位極化曲線圖.................. 59 圖4-33、Cr-Cu-N薄膜在0.89 wt.%NaCl水溶液中之開路電位曲線圖............... 59 圖4-34、Cr-Cu-N薄膜在0.89 wt.%NaCl水溶液中之動電位極化曲線............... 60 圖4-35、Cr-Cu-N薄膜經電化學腐蝕後之表面形態,薄膜含銅量(a) 1.6 at.% (b) 5.3 at.% (c)10.2 at.%(d)15.6 at.%(e)22.1at.% (f)24.1 at.%................ 61 圖4-36、Cr-Cu-N薄膜腐蝕機制圖............................................ 62 圖4-37、A6試片於電化學腐蝕後表面成份分析區域............................. 63 圖4-38、CrCuN薄膜經400 ℃退火後表面形貌(a)試片A1,銅含量1.6 at.% (b)試片A2,銅含量5.3 at.% (c)試片A3,銅含量10.2 at.%(d)試片A6,銅 含量24.1 at.%............................................................ 65 圖4-39、CrCuN薄膜經400 ℃退火後薄膜截面形貌(a)試片A1,銅含量1.6 at.% (b)試片A2,銅含量5.3 at.% (c)試片A3,銅含量10.2 at.%(d)試片A6,銅 含量24.1 at.%............................................................ 66 圖4-40、CrCuN薄膜經450 ℃退火後表面形貌(a)試片A1,銅含量1.6 at.% (b)試片A2,銅含量5.3 at.% (c)試片A3,銅含量10.2 at.%(d)試片A6,銅含 量24.1 at.%.............................................................. 68 圖4-41、CrCuN薄膜經450 ℃退火後薄膜截面形貌(a)試片A1,銅含量1.6 at.% (b)試片A2,銅含量5.3 at.% (c)試片A3,銅含量10.2 at.%(d)試片A6,銅含量 24.1 at.%................................................................ 69 圖4-42、CrCuN薄膜經500 ℃退火後表面形貌(a)試片A1,銅含量1.6 at.% (b)試 片A2,銅含量5.3 at.% (c)試片A3,銅含量10.2 at.%(d)試片A6,銅含量 24.1 at.%................................................................ 71 圖4-43、CrCuN薄膜經500 ℃退火後薄膜截面形貌(a)試片A1,銅含量1.6 at.% (b)試片A2,銅含量5.3 at.% (c)試片A3,銅含量10.2 at.%(d)試片A6,銅含量 24.1 at.%................................................................ 72 圖4-44、A1試片經400 ℃退火後之表面(a)二維及(b)三維形貌................... 74 圖4-45、A2試片經400 ℃退火後之表面(a)二維及(b)三維形貌................... 74 圖4-46、A3試片經400 ℃退火後之表面(a)二維及(b)三維形貌................... 75 圖4-47、A6試片經400 ℃退火後之表面(a)二維及(b)三維形貌................... 75 圖4-48、A1試片經450 ℃退火後之表面(a)二維及(b)三維形貌................... 76 圖4-50、A3試片經450 ℃退火後之表面(a)二維及(b)三維形貌................... 77 圖4-51、A6試片經450 ℃退火後之表面(a)二維及(b)三維形貌................... 77 圖4-52、A1試片經500 ℃退火後之表面(a)二維及(b)三維形貌................... 78 圖4-53、A2試片經500 ℃退火後之表面(a)二維及(b)三維形貌................... 78 圖4-54、A3試片經500 ℃退火後之表面(a)二維及(b)三維形貌................... 79 圖4-55、A6試片經500 ℃退火後之表面(a)二維及(b)三維形貌................... 79 圖4-56、Cr-Cu-N薄膜經退火處理後表面粗糙度與退火溫度、銅含量關係圖........ 80 圖4-57、Cr-Cu-N經400 ℃退火處理之X光繞射圖............................... 82 圖4-58、Cr-Cu-N經450 ℃退火處理之X光繞射圖............................... 83 圖4-59、Cr-Cu-N經500 ℃退火處理之X光繞射圖............................... 84 圖4-60、A3試片經450 ℃退火處理後表面成分分析區域......................... 85 圖4-61、A6試片經450 ℃退火處理後表面成分分析區域......................... 86 圖4-62、A6試片經500 ℃退火處理後表面成分分析區域......................... 87 圖4-63、Cr-Cu-N薄膜經退火處理後硬度與銅含量關係圖........................ 89 表目錄 表3-1、脈衝頻率參數表.................................................... 21 表3-2、濺鍍參數.......................................................... 22 表4-1、Cr-Cu-N奈米複合薄膜元素定量分析表................................. 32 表4-2、Cr-Cu-N奈米複合薄膜氮化鉻與銅之體積比例表.........................32 表4-3、Cr-Cu-N薄膜平均粗糙度與最大粗糙度................................. 40 表4-4、CrCuN薄膜之抑菌率................................................. 50 表4-5、抑菌實驗後A4試片表面成分分析...................................... 51 表4-6、CrCuN薄膜在0.89 wt.%NaCl抗腐蝕量測結果參數........................ 60 表4-7、電化學腐蝕實驗過後A6試片鍍膜表面成分分............................ 63 表4-8、Cr-Cu-N薄膜經退火處理後之表面平均粗糙度值......................... 80 表4-9、450 ℃退火處理後A3試片表面成分分析................................ 85 表4-10、450 ℃退火處理後A6試片表面成分分析............................... 86 表4-11、500 ℃退火處理後A6試片表面成分分析............................... 87

1. 蕭國益,翁明壽,“硬及超硬膜技術的現在與未來”,工業材料,143期,74 - 89頁,民國八十七年十一月。
2. 鐘永文,“物理蒸鍍氮化鉻鍍膜於碳化鎢基材高溫氧化性能之研究”,國立高雄第一科技大學機械與自動化工程所碩士學位論文,民國九十二年。
3. G. A. Zhang, P. X. Yan, P. Wang, Y. M. Chen, and J.Y. Zhang, “Structure evolution and mechanical properties enhancement of Al/AlN multilayer’’, Applied Surface Science, Vol. 253, pp. 7353-7359 (2007).
4. Eun Young Choi, Myung Chang Kang, Dong Hee Kwon, Dong Woo Shin, and KwangHo Kim, “Comparative studies on microstructure and mechanical propertiesof CrN, Cr-C-N and Cr-Mo-N coatings” ,Journal of Materials Processing Technology, Vol. 187-188, pp. 566-570 (2007).
5. J. W. Lee and Y. C. Chang, “A study on the microstructures and mechanical properties of pulsed DC reactive magnetron sputtered Cr-Si-N nanocomposite coatings”, Surface and Coatings Technology, Vol. 202, pp. 831-836 (2007).
6. Yu-Chu Kuoa, Jyh-Wei Lee, Chaur-Jeng Wang, and Yu-Jie Chang, “The effect of Cu content on the microstructures, mechanical and antibacterial properties of Cr-Cu-N nanocomposite coatings deposited by pulsed DC reactive magnetron sputtering”, Surface and Coating Technology, Vol. 202, pp. 854-860 (2007).
7. Z. G. Dan, H. W. Ni, B. F. Xu, J. Xiong, and P. Y. Xiong, “Microstructure and antibacterial properties of AISI 420 stainless steel implanted by copper ions”, Thin Solid Films, Vol. 492, pp. 93-94 (2005).
8. E. Robine, L. Boulangé-Petermann, and D. Derangère., J. Microbiology Meth., Vol. 49, pp. 225-227 (2002).
9. M. I. Baena, M. C. Marquez, V. Matres, J. Botella, and A. Ventosa, Current Microbiology, Vol. 53, pp. 491-492 (2006).
10. M. Pakala and R. Y. Lin, “Reactive sputter deposition of chromium nitride coatings”, Surface and Coatings Technology, Vol. 81, pp. 233-236 (1996).
11. Y. Chiba, T. Omura, and H. Ichimura, “Wear resistance of arc ion-plated chromium nitride coatings’’, Journal of Materials research, Vol. 8 (5), pp.1109-1115 (1993).
12. B. Navinšek, P. Panjan, and I. Milošev, “Industrial applications of CrN(PVD) coatings, deposited at high and low temperatures”, Surface and Coatings Technology, Vol. 97, pp. 182-191 (1997).
13. T. Hurkmans, D. B. Lewis, J. S. Brooks and W. D. Munz,“Chromium nitridecoatings grown by unbalanced magnetron (UBM) and combined arc/unbalanced magnetron (ABSTM) deposition techniques”, Surface and Coatings Technology, Vol. 86-87, pp. 192-199 (1996).
14. C. Nouveau and M. A. Djouadi, “Stress and structure profiles for chromium nitride coatings deposited by r.f. magnetron sputtering”, Thin Solid Films, Vol. 398-399, pp. 490-495 (2001).
15. G. Wei, T. W. Scharf, J. N. Zhou, F. Huang, M. L. Weaver, and J. A. Barnard, “Nanotribology studies of Cr, Cr2N and CrN thin films using constant and ramped load nanoscratch techniques”, Surface and Coatings Technology, Vol. 146-147, pp. 357-362 (2001).
16. J. Vetter, R. Knaup, H. Dwuletzki, E. Schneidr, and S. Vogler, “Hard coatings for lubrication reduction in metal forming”, Surface and Coatings Technology, Vol.87, pp. 739-741 (1996).
17. M. A. Djouadi, C. Nouveau, P. Beer, and M. Lambertin, “CrxNy hard coatings deposited with PVD method on tools for wood maching”, Surface and Coatings Technology, Vol.133-134, pp. 478-483 (2000).
18. C. S. Barret, and T. B. Massalski, Editors, Structure of Metals. Crystallographic Methods, Principles and Data, Pergamon Press Ltd, Oxford, pp. 403-404 (1980).
19. 吳明勳,“添加銀或鎢對氮化鉻薄膜磨潤性能之影響”,國立成功大學機械工程學系碩士學位論文,民國九十二年。
20. F. Regent and J. Musil, Surface and Coatings Technology, Vol. 142-144, pp. 280-285 (2001).
21. Hyun S. Myung, Hyuk M. Lee, Leonid R. Shaginyanb, and Jeon G. Hana, “Microstructure and mechanical properties of Cu doped TiN superhard nanocomposite coatings”, Surface and Coatings Technology, Vol. 163-164, pp. 591-596 (2003).
22. J. Musil and J. Vlček, “Magnetron sputtering of films with controlled texture and grain size”, Materials Chemistry and Physics, Vol.54, pp. 116-122 (1998).
23. R. W. Siegel and G. E. Fougere, Materials Research Society, Vol.362, pp. 219-229 (1995).
24. I. A. Ovid’ko, “Dilatation stresses and transport properties of grain boundaries in high-TC superconductors”, Materials Science and Engineering A, Vol. 313, pp. 207-217 (2001).
25. J. Musil, I. Leipner, and M. Kolega, “Nanocrystalline and nanocomposite CrCu and CrCu-N films prepared by magnetron sputtering”, Surface and Coating Technology, Vol. 115, pp. 32-37 (1999).
26. Jyh-Wei Lee, Yu-Chu Kuo, and Yue-Chyuan Chang, “Microstructure and mechanical properties of pulsed DC magnetron sputtered nanocomposite Cr-Cu-N thin films”, Surface and Coatings Technology, Vol. 201, pp. 4078-4082 (2006).
27. J. Musil, “Hard and superhard nanocomposite coatings”, Surface and Coatings Technology, Vol. 125, pp. 322-330 (2000).
28. J. H. Hsieh, C. M. Wang, and C. Li, “Deposition and characterization of TaN–Cu nanocomposite thin films”, Surface and Coatings Technology, Vol. 200, pp. 3179-3183 (2006).
29. J. H. Hsieh, M. K. Cheng, C. Li, S.H. Chen, and Y.G. Chang, “Study of Cu emergence on the surface of TaN-Cu nanocomposite thin films and its effects on tribological property”, Thin Solid Films, Vol. 516, pp. 5430-5434 (2008).
30. A. Öztürk, K. V.Ezirmik, K. Kazmanlı, M. Urgen, O. L. Eryılmaz, and A. Erdemir, “Comparative tribological behaviors of TiN-, CrN- and MoN-Cu nanocomposite coatings”, Tribology International, Vol. 41, pp. 49-59 (2008).
31. D. William and Jr. Callister, Materials Science And Engineering An Introduction, Wiley, New York, Chapter 7, pp. 174 (2003).
32. D. Rafaja, A. Poklad, V. Klemm, G. Schreiber, D. Heger, and M. ˇS´ıma, “Microstructure and hardness of nanocrystalline Ti1-x-yAlxSiyN thin films”, Materials Science and Engineering A, Vol. 462, pp. 279-282 (2007).
33. X. B. Tian, Z. M. Wang, S. Q. Yang, Z. J. Luo, Ricky K. Y. Fu, and Paul K. Chu, “Antibacterial copper-containing titanium nitride films produced by dual magnetron sputtering”, Surface and Coatings Technology, Vol. 201, pp. 8606-8609 (2007).
34. 季君暉,史維明,“抗菌材料”,(北京,化學工業出版社,2004),pp.195-212.
35. 金宗哲,“無機抗菌材料與應用”,(北京,化學工業出版社,2004),pp.202-211.
36. M. C. Baykul, “Preparation of shape gold tips for STM by using electrochemical etching method”, Materials Science and Engineer B, Vol. 74, pp. 229-233 (2000).
37. M. Koinuma and K. Uosaki, “AFM tip induced selective electrochemical etching of and metal deposition on p-GaAs(100) surface”, Surface Science, Vol. 357-358, pp. 565-570 (1996).
38. J. Kunze, V. Maurice, L. H. Klein, H. H. Strehblow, and P. Marcus, “In situ STM study of the effect of chlorides on the initial stages of anodic oxidation of Cu(111) in alkaline solutions.”, Electrochemica Acta, Vol. 48, pp. 1157-1167 (2003).
39. A. V. Benedetti, P. T. A. Sumodjo, K. Nobe, P. L. Cabot, and W. G. Proud, “Electrochemical studies of copper, copper-aluminum and copper- aluminum-silver”, Electrochemica Acta, Vol. 40, No. 16, pp. 2657-2668 (1995).
40. Y. Tomita, Y. Hasegawa, and K. Kobayashi, “Nano-scale Cu metal patterning by using an atomic force microscope”, Applied Surface Science, Vol. 244, pp. 107-110 (2005).
41. S. H. Ahn, Y. S. Choi, J. G. Kim, and J. G. Han, “A study on corrosion resistance characteristics of PVD Cr-N coated steels by electrochemical method”, Surface and Coatings Technology, Vol. 150, pp. 319-326 (2002).
42. J. Creus, A. Billard, and F. Sanchette, “Corrosion behaviour of amorphous Al-Cr and Al-Cr-(N) coatings deposited by dc magnetron sputtering on mild steel substrate”, Thin Solid Films, Vol. 466, pp. 1-9 (2004).
43. Cheng-Hsun Hsu, Chien-Chih Lee, and Wei-Yu Ho, “Filter effects on the wear and corrosion behaviors of arc deposited (Ti,Al)N coatings for application on cold-work tool steel”, Thin Solid Films, Vol. 516, pp. 4826-4832 (2008).
44. J. Komotori , B. J. Lee , H. Dong, and P. A. Dearnley, “Corrosion response of surface engineered titanium alloys damaged by prior abrasion”, Wear, Vol. 251, pp. 1239-1249 (2001).
45. V. E. Carter, Metallic Coatings for Corrosion Control, Newnes, London, pp. 119-121 (1977).
46. 李朝聖,“單晶銅於奈米壓入之應變分析”,中原大學機械工程研究所碩士學位論文,民國九十五年。
47. W. C. Oliver and G. M. Pharr, “An Improved Technique for Determining Hardness and Elasic Modulus Using Load and Displacement Sensing Indentation Experiments”, Journal of Materials Research, Vol. 7(6), pp. 1564-1583 (1992).
48. TriboScope User Manual, Hysitron Inc, (2002).
49. M. Larsson, M. Bromark, P. Hedenqvist, and S. Hogmark, “Deposition and mechanical properties of multilayered PVD Ti---TiN coatings”, Surface and Coating Technology”, Vol. 76-77, pp. 202-205 (1995).
50. Z. G. Dan, H. W. Ni, B. F. Xu, J. Xiong, and P. Y. Xiong, “Microstructure and antibacterial properties of AISI 420 stainless steel implanted by copper ions”, Thin Solid Films, Vol. 492, pp. 93-100 (2005).
51. Neisseria Gonorrhoeae reference strains for antimicrobial susceptibility testing, 2005, US CDC b88.
52. 抗菌加工製品-抗菌性試驗方法與抗菌效果,2000,JIS Z 2801:2000.
53. P. Zeman, R. Čerstvý, P. H. Mayrhofer, C. Mitterer, and J. Musil, “Structure and properties of hard and superhard Zr-Cu-N nanocomposite coatings”, Materials Science and Engineering A, Vol. 289, pp. 189-197 (2000).
54. P. H. Mayrhofer, G. Tischler, and C. Mitterer, “Microstructure and mechanical/thermal properties of Cr-N coatings deposited by reactive unbalanced magnetron sputtering”, Surface and Coatings Technology, Vol. 142-144, pp. 78-84 (2001).
55. P. Karvánková, H. D. Männling, C. Eggs, and S. Veprek, “Thermal stability of ZrN-Ni and CrN-Ni superhard nanocomposite coatings”, Surface and Coatings Technology, Vol. 146-147, pp. 280-285 (2001).
56. W. Gao, H. Gong, J. He, A. Thomas, L. Chan, and S. Li, “Oxidation behaviour of Cu thin films on Si wafer at 175-400 °C”, Materials Letters, Vol. 51, pp.78-84 (2001).
57. C. C. Tseng, J. H. Hsieh, W. Wua, S. Y. Chang, and C. L. Chang, “Surface and mechanical characterization of TaN–Ag nanocomposite thin films”, Thin Solid Films, Vol. 516, pp. 5424-5429 (2008).
58. W. Herr and E. Broszeit, “The influence of a heat treatment on the microstructure and mechanical properties of sputtered coatings”, Surface and Coatings Technology, Vol. 97, pp. 335-340 (1997).
59. Fu-Hsing Lu and Hong-Ying Chen, “Phase changes of CrN films annealed at high temperature under controlled atmosphere”, Thin Solid Films, Vol. 398-399, pp. 368-373 (2001).
60. Hong-Ying Chen and Fu-Hsing Lu, “Stress relaxation-induced phase transformation in chromium nitride films”, Journal of Materials Science Letters, Vol. 22, pp. 817-819 (2003).

QR CODE