簡易檢索 / 詳目顯示

研究生: 陳柏瑞
Po-Jui Chen
論文名稱: 在不同設計參數下柱-基礎接合部往復載重行為研究
Cyclic Behavior of Column-Foundation Connection with Different Design Parameters
指導教授: 鄭敏元
Min-Yuan Cheng
口試委員: 歐昱辰
Yu-Chen Ou
陳正誠
Cheng-Cheng Chen
邱建國
Chien-Kuo Chiu
鄭敏元
Min-Yuan Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 236
中文關鍵詞: 往復載重柱-基礎接合部彎鉤錨定擴頭鋼筋錨定
外文關鍵詞: cyclic loading, column-foundation connection, hooked anchor, headed anchor
相關次數: 點閱:197下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去討論鋼筋混凝土柱-基礎接合部強度的相關文獻相當有限,惟近期研究(Worsfold and Moehle, 2019)顯示受彎矩主控之柱-基礎接合部在強度評估上還有許多研究空間,本研究延續去年的測試計畫(陳玠宏,2021),設計、製作、並測試另外十組大型鋼筋混凝土柱-基礎試體,進一步探討不同設計參數下,以彎矩主控之鋼筋混凝土柱-基礎其接合部強度。

    本研究十組試體主要測試變數包含:(1) 柱主筋錨定方式、(2) 基礎主筋量、以及(3) 基礎剪力鋼筋型式與配置。實驗結果顯示,在基礎版內無配置棒棒糖式繫筋或180-90彎鉤繫筋的五組試體其力量損失與接合部內產生錐形破壞面有關,此錐形破壞面應為錨栓群混凝土拉破造成,相較柱主筋以90度標準彎鉤且彎鉤向內錨定,柱主筋使用擴頭錨定可以傳遞較大的彎矩強度。以錨栓強度模型去評估這些試體最大側力發現ACI 318-19混凝土拉破強度、彎鉤錨定之單根錨栓拔出強度、以及混凝土剪破強度相當保守,應有合理提高的空間。本研究所建議之混凝土拉破強度提升係數,可以適當地評估去年六組試體測試結果。

    另一方面,在基礎版內配置配置繫筋(棒棒糖式繫筋或180-90彎鉤繫筋)的情況下,另外五組試體其最大側力均達到柱底降伏強度,而側力損失主要因為柱主筋握裹破壞,這些試體在測試過程中可以聽到基礎版底有混凝土剝落之聲音,其中柱主筋使用擴頭錨定可以提供較佳錨定拉力、維持最大側力至較大位移,而彎鉤錨定鋼筋則因為延續端承載於基礎主筋上所以提供較佳壓力、其緊縮(pinching)情況較為緩和。


    Existing researches on strength of the reinforced concrete (RC) column-foundation connection are limited. A recent study (Worsfold and Moehle, 2019) indicated that there is still some room for research on this subject. This research, as an extension of the study conducted last year (Chieh-Hung Chen, 2021), designed, constructed, and tested another 10 large-scale column-foundation specimens to further investigate the strength of RC column-foundation connection governed by moment transfer.

    The key test parameters of the 10 specimens tested in this study included: (1) anchorage types of the column flexural reinforcement, (2) amount of foundation flexural reinforcement, and (3) shear reinforcement scheme in the connection. Test results showed that specimens without the use of candy-cane or 180-90 crossties failed due to the formation of cone-shape failure surface in the connection. Compared to the specimens anchored by 90 degree standard hooked bar with the tail bent inside, specimens anchored by T-head was able to transfer larger moment. Based on the maximum strength of these specimens, analytical results showed that concrete breakout strength in tension, pullout strength of a single bar, and concrete breakout strength in shear as per ACI 318-19 appeared to have room to increase. The proposed amplification factor for concrete breakout strength in tension appeared to be applicable to the six specimens tested last year.

    For specimens with candy-cane or 180-90 crossties, on the other hand, maximum lateral strength of the rest of five specimens appeared to be limited by yielding of the column longitudinal reinforcement at the column base. The loss of lateral force was associated with the bond deterioration. The sound of concrete pieces falling on the ground was heard during the test of these specimens. Specimens anchored by T-head sustain the tension better to a larger deformation. Specimen anchored by hooked bar with the tail bend outside was able to distribute the compression force to the bottom foundation flexural reinforcement and thus alleviated the pinching behavior.

    目錄 摘要 I Abstract II 目錄 Ⅳ 圖目錄 Ⅶ 表目錄 Ⅹ 第一章 緒論 1 1.1 研究背景及動機 1 1.2 研究目的 1 1.3 研究方法 2 1.4 研究內容架構 3 第二章 文獻回顧 4 2.1 柱-基礎接合部使用擴頭錨栓錨定(Worsfold與Moehle, 2019) 4 2.2 強度評估模型 6 2.2.1 基礎單向剪力強度 6 2.2.2 基礎雙向(穿孔)剪力強度 8 2.2.3 柱-基礎接頭剪力強度 10 2.2.4 錨栓群混凝土拉破強度 11 2.2.5 單根錨栓拔出強度 13 2.2.6 錨栓群混凝土剪破強度 14 2.2.7 錨栓群混凝土剪力撬破強度 17 第三章 試體規劃 19 3.1 試體尺寸 19 3.2 試體製作 45 3.2.1 擴頭鋼筋之擴頭製作 45 3.2.2 基礎版製作 47 3.2.3 試體柱與頂部混凝土塊製作 50 3.3 實驗配置 52 3.4 測試程序 56 3.5 量測系統 61 3.5.1 鋼筋應變計 61 3.5.2 外部位移計 68 3.5.3 光學量測系統 70 3.5.4 混凝土圓柱試體應變測試配置 72 第四章 試體結果分析 73 4.1 材料試驗結果 73 4.1.1混凝土圓柱試體坍度及抗壓試驗 73 4.1.2 鋼筋拉伸試驗 80 4.2 試體測試過程 83 4.3 基礎版剖面裂縫 114 4.4 力量位移曲線 121 4.5 接合部變形分析 128 4.6 試體強度分析 134 4.7 鋼筋應變計量測結果分析 140 第五章 結論與建議 147 5.1 結論 147 5.2 建議 148 附錄A 柱主筋應變計量測結果 149 A.1 試體T_0.2 149 A.2 試體HI_0.2 151 A.3 試體T_0.4 153 A.4 試體HI_0.4 155 A.5 試體T_0.4_CE 157 A.6 試體HO_0.4_CE 159 A.7 試體T_0.4_CUE 161 A.8 試體HO_0.4_CUE 163 A.9 試體HI_0.4_U 165 A.10 試體T_0.4_HE 167 附錄B 基礎主筋應變計量測結果 169 B.1 試體T_0.2 169 B.2 試體HI_0.2 174 B.3 試體T_0.4 179 B.4 試體HI_0.4 184 B.5 試體T_0.4_CE 189 B.6 試體HO_0.4_CE 194 B.7 試體T_0.4_CUE 199 B.8 試體HO_0.4_CUE 204 B.9 試體HI_0.4_U 209 B.10 試體T_0.4_HE 214 附錄C 基礎橫向鋼筋應變計量測結果 219 C.1 試體HI_0.4_U 219 參考文獻 221

    ACI Committee 318, 2014, “Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14)” American Concrete Institute, Farmington Hills, MI, 519 pp.

    ASCE/SEI 41, 2017, “American Society of Civil Engineers, Seismic Evaluation and Retofit of Existing Buildings,” American Society of Civil Engineers, Reston, Virginia, U.S.A., 550 pp.

    ASTM A370-17, 2017, “Standard Test Methods and Definitions for Mechanical Testing of Steel Products,” ASTM International, West Conshoshocken, Pennsylvania, 49 pp.

    Muttoni, A., 2008, “Punching Shear Strength of Reinforced Concrete Slabs without Transverse Reinforcement,” ACI Structural Journal, V.105, No.4, pp. 440-450.

    David Darwin, Charles W. Dolan, Arthur H. Nilson,2016, “Design of Concrete Structures,” Fifteenth Edition, McGraw-Hill Education Inc., NY, 786 pp.

    FEMA 461, 2007, “Interim Testing Protocols for Determining the Seismic Performance Characteristics of Structural and Nonstructural Components,” June, pp. 21-23.

    Gerd Birkle and Walter H. Dilger, 2008, “Influence of Slab Thickness on Punching Shear Strength,” ACI Structural Journal, V.105, No.2, pp. 180-188.

    Neil M. Hawkins, Carlos E. Ospina, 2017, “Effect of slab flexural reinforcement and depth on punching strength,” Punching Shear in Structural Concrete Slabs: Honoring Neil M. Hawkins, SP-315, American Concrete Institute, Farmington Hills, MI, April, pp.117-140.

    Thai X. Dam, James K. Wight, and Gustavo J. Parra-Montesinos, 2017, “Behavior of Monotonically Loaded Slab-Column Connections Reinforced with Shear Studs”, ACI Structural Journal, V.114, No.1, pp. 221-232.

    Widianto, Oguzhan Bayrak, and James O. Jirsa, 2009, “Two-Way Shear Strength of Slab-Column Connections: Reexamination of ACI 318 Provisions,” ACI Structural Journal, V.106, No.2, pp. 160-170.

    Wight, J.K., 2016, “Reinforced Concrete: Mechanics and Design,” Seventh Edition, Pearson Education Inc., Hoboken, NJ,1144 pp.

    Worsfold, B.J., and Moehle, J.P., 2019, “Laboratory Tests of Column-Foundation Moment Transfer Connections with Headed Anchors,” Department of Civil and Environmental Engineering University of California, Barkeley,Jan, 171 pp.

    W. Dilger, G. Birkle, and D. Mitchell, 2005, “Effect of Flexural Reinforcement on Punching Shear Resistance,” Punching Shear in reinforced Concrete Slabs, SP-232-4, American Concrete Institute, Farmington Hills, MI, October, pp. 57-74.

    QR CODE