簡易檢索 / 詳目顯示

研究生: 李庭瑋
Ting-Wei Lee
論文名稱: 利用紫外線/過氧化氫程序處理水溶液中含氮物質之研究
Treatment of Nitrogenous Substances in Aqueous Solution by UV/H2O2 Process
指導教授: 顧洋
Young Ku
口試委員: 蔣本基
Pen-Chi Chiang
曾迪華
Dyi-Hwa Tseng
劉志成
Jhy-Chern Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 141
中文關鍵詞: 紫外線/過氧化氫程序過氧化氫氨氮尿素
外文關鍵詞: UV/H2O2 process, hydrogen peroxide, ammonia, urea
相關次數: 點閱:304下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用紫外線/過氧化氫程序處理水溶液中含氮之物質,包含氨氮以及尿素,並分別探討初始溶液pH值、光源強度、初始過氧化氫濃度與初始反應物濃度等變因對反應物去除之影響。
以紫外線/過氧化氫程序處理氨氮水溶液之系統中,溶液pH值為影響反應之重要因素。由於氨氮及過氧化氫的酸解離常數(pKa)分別為9.3及11.6,因此溶液pH值的改變會分別影響水溶液中氨氮及過氧化氫之物種分布情形,本研究之實驗結果顯示,在酸性及中性條件下並沒有氨氮被降解;然而在鹼性條件下,隨著初始pH值上升,氨氮降解之效率隨之增加,但當pH值大於11時,其氨氮降解之效率卻明顯的下降。
光源強度及初始過氧化氫濃度亦會對系統中氨氮降解之效率產生影響,實驗結果中指出隨著光源強度的增加,單位時間單位面積提供之光能量增加,有較好的氨氮降解效率。另外,隨著過氧化氫濃度的增加,提供較多的氫氧自由基,有助於氨氮降解效率之提升,但添加過量的過氧化氫,過氧化氫及其生成的超氧化氫自由基會與氫氧自由基反應,造成氨氮降解效率下降。
本研究初步認為,以紫外線/過氧化氫程序降解水溶液中之氨氮物質,其最適操作條件為:初始溶液pH=10,光源強度=8.93 mW/cm2,初始過氧化氫濃度=480 mg/L。在此操作條件下,反應120分鐘後,水溶液中氨氮去除率可達45.33%。
最後,本研究亦發現,使用紫外線/過氧化氫程序處理水溶液之尿素物質,不具有顯著之效果,可能原因是尿素具有共振結構,穩定地存在於水溶液中,因此不利於紫外線/過氧化氫程序中所產生的親電性氫氧自由基進行反應。


Degradation of nitrogenous substances, including ammonia and urea, in aqueous solution by UV/H2O2 process was studied under various initial solution pH, light intensity, initial hydrogen peroxide concentration and initial reactant concentration to evaluate the removal efficiencies of ammonia and urea.
In the UV/H2O2 system, the initial solution pH was a significant factor to affect the degradation of ammonia. It is attributed to ammonia and hydrogen peroxide could decompose in aqueous solution with the pKa values of 9.3 and 11.6, respectively. Results showed that the degradation of ammonia was found to be enhanced with the increase of initial solution pH under alkaline condition, whereas there was no ammonia degradation under acidic and neutral conditions. However, the removal efficiency would decrease when the pH value above 11.
On the other hand, the light intensity and initial hydrogen peroxide would also influence the removal efficiency of ammonia. Results showed that the degradation of ammonia increased with increasing light intensity and hydrogen peroxide dosage. However, further addition of hydrogen peroxide would decrease the removal efficiency of ammonia because of the excessive of hydrogen peroxide could become scavengers of hydroxyl radicals.
In this study, the optimum operating conditions for degradation of ammonia in the UV/H2O2 system was as follows: initial solution pH 10, light intensity 8.93 mW/cm2, and initial hydrogen peroxide concentration 480 mg/L. according to the conditions, the maximum removal efficiency of ammonia is 45.33% after 120 minutes.
Finally, it was no significant effect to remove urea in aqueous solution by UV/H2O2 process. This result would be explained by the property of urea in the aqueous solution. In the aqueous solution, urea is a stable compound due to resonance structures, which is hardly attacked by electrophile of hydroxyl radical.

Abstract 中文摘要 Acknowledgements Table of Content List of Table List of Symbol Chapter 1 Introduction Chapter 2 Literature Review 2.1 Introduction of the Nitrogenous Wastewater 2.1.1 Physical and Chemical Properties of Ammonia and Urea 2.1.2 The Sources of the Nitrogenous Substances in Water Body and its Consequences 2.1.3 Decomposition of Ammonia and Urea in Aqueous Solution 2.2 Principle and Mechanism of UV/H2O2 Process 2.3 Influence of Operating Factor on UV/H2O2 Process 2.3.1 Effect of Solution pH 2.3.2 Effect of Light Intensity 2.3.3 Effect of Initial Hydrogen Peroxide Concentration 2.3.4 Effect of Initial Pollutants Concentration 2.4 Kinetic Analysis Chapter 3 Materials and Experiments 3.1 Materials 3.2 Experimental Instruments and Apparatus 3.2.1 Experimental Instruments 3.2.2 Experimental Apparatus 3.3 Experimental Procedures 3.3.1 Experimental Framework 3.3.2 Analytic Methods 3.3.3 Elemental Mass Balance Chapter 4 Results and Discussion 4.1 Background Experiments 4.1.1 Stability of Hydrogen Peroxide, Ammonia and Urea in Aqueous Solutions 4.1.2 Photolysis of Hydrogen peroxide in Aqueous Solution 4.1.3 Decomposition of Ammonia and Urea by UV Process in Aqueous Solution 4.1.4 Decomposition of Ammonia and Urea by H2O2 Process in Aqueous Solution 4.1.5 Measurement of Light Intensity 4.2 Decomposition of Ammonia in Aqueous Solution by UV/H2O2 Process 4.2.1 Effect of Initial Solution pH 4.2.2 Effect of Light Intensity 4.2.3 Effect of Initial Hydrogen Peroxide Concentration 4.2.4 Effect of Initial Ammonia Concentration 4.3 Decomposition of Urea in Aqueous Solution by UV/H2O2 Process 4.3.1 Effect of Initial Solution pH 4.3.2 Effect of Light Intensity 4.3.3 Effect of Initial Hydrogen Peroxide Concentration 4.3.4 Effect of Initial Urea Concentration 4.4 Kinetic Analysis of Degradation of Ammonia and Urea in Aqueous Solution 4.4.1 Kinetic Analysis of Degradation of Ammonia 4.4.2 Kinetic Analysis of Degradation of Urea 4.4.3 Proposed Mechanisms of Degradation of Ammonia Chapter 5 Conclusion and Recommendation Reference

Aleboyeh, A., Moussa, Y. and Aleboyeh, H., “The Effect of Operational Parameters on UV/H2O2 Decolourisation of Acid Blue 74,” Dyes Pigm., Vol. 66, pp. 129-134 (2005).
Arthur, J. W., West, C. W., Allen, K. N. and Hedtke, S. F., “Seasonal Toxicity of Ammonia to Five Fish and Nine Invertebrate Species,” Bulletin of Environmental Contamination and Toxicology, Vol. 38l, pp. 324-331 (1987).
Barros, A. L., Pizzolato, T. M., Carissimi, E. and Schneider, I. A. H., “Decolorizing Dye Wastewater from the Agate Industry with Fenton Oxidation Process,” Miner. Eng., Vol. 19, pp. 87-90 (2006).
Bonsen, E. M., Schroeter, S., Jacobs, H. and Broekaert, J. A. C., “Photocatalytic Degradation of Ammonia with TiO2 as Photocatalyst in the Laboratory and under the Use of Solar Radiation,” Chemosphere, Vol. 35, pp. 1431-1445 (1997).
Brtion, N. N., Paterniani, J. E. S., Brota, G. A. and Pelegrini, R. T., “Ammonia removal from leachate by photochemical process using H2O2,” An interdisciplinary Journal of Applied Science, Vol. 5, pp. 51-60 (2010).
Chang, P. B. L. and Young, T. M., “Kinetics of Methyl tert-Butyl Ether Degradation and by-Product Formation during UV/Hydrogen Perdoxide Water Treatment,” Wat. Res. Vol.349, pp. 2233-2240 (2000).
Chi, W. C., “Treatment of Ammonia in Aqueous Solution by Photocatalytic Process with Applying Bias Potential,” Master Dissertation of National Taiwan University of Science and Technology, Taiwan Taipei, (2015).
Crittenden, J. C., Hu, S., Hand, D. W. and Green, S. A., “A Kinetic Model for H2O2/UV Process in a Completely Mixed Batch Reactor,” Wat. Res. Vol. 33, pp. 2315-2328 (1999).
Eisenberg, M. G., “Colorimetric Determination of Hydrogen Peroxide,” J. Ind. Eng. Chem. Vol. 15, pp. 327-328 (1943).
Ghodbane, H. and Hamdaoui O., “Decolorization of Antraquinonic Dye, C.I. Acid Blue 25, in Aqueous Solution by Direct UV Irradiation, UV/H2O2 and UV/Fe(II) Processes,” Chem. Eng. J., Vol. 160, pp. 226-231 (2010).
Gligorovski, S., Strekowski, R., Barbati, S. and Vione D., “Environmental Implications of Hydroxyl Radicals (•OH),” Chem. Rev., Vol. 115, pp. 13051-13092 (2015).
Ho, P. C., “Photooxidation of 2, 4-dinitrotoluene in Aqueous Solution in the Presence of Hydrogen Peroxide,” Environ. Sci. Technol., Vol. 20, pp. 260 (1986).
Hone, H. J. and Schulte, P., “Evaluation of the H2O2/UV Process for the Oxidation of Hazardous Waste Media in Industrial Effluents and Process,” paper presented at ACS Sym. Atlanta, Georgia (1991).
Hu, Q., Zhang, C., Wang, Z., Chen, Y., Mao, K., Zhang, X., Xiong, Y. and Zhu, M., “Photodegradation of Methyl tert-Butyl Ether (MTBE) by UV/H2O2 and UV/TiO2,” J. Hazard. Mater., Vol. 154, pp. 795-803 (2008).
Huang, L., Li, L., Dong, W., Liu, Y. and Hou, H., “Removal of Ammonia by OH Radical in Aqueous Phase,” Environ. Sci. Technol., Vol. 42, pp. 8070-8075 (2008).
Hung, J. Y., “Reaction Behaviors and Biological Function of Amoxicillin and Bisphenol A in Aqueous Solution Treated by UV/H2O2 Process,” Master Dissertation of National Taiwan University of Science and Technology, Taiwan Taipei, (2011).
Jiraroj, D., Unob, F. and Hagège A., “Degradation of Pb–EDTA Complex by a H2O2/UV Process,” Wat. Res. Vol. 40, pp. 107-112 (2006).
Kochany, J. and Bolton, J. R., “Mechanism of Photodegradation of Aqueous Organics Pollutant 2 Measurement of the Primary Rate Constant for Reaction of OH. Radicals with Benzene and Some Halobenzenes Using an EPR Spin-Tapping Method Following the Photolysis of H2O2,” Environ. Sci. Technol., Vol. 26, pp. 262 (1992)
Ku, Y., Huang, Y. J., Chen, H. W. and Hou, W. M., “Decomposition of Acetone by Hydrogen Peroxide/Ozone Process in a Rotating Packed Contactor,” Water Environ. Res., Vol. 83, pp. 588-593 (2011).
Ku, Y., Wang, L. S. and Shen, Y. S., “Decomposition of EDTA in Aqueous Solution by UV/H2O2 Process,” J. Hazard. Mater., Vol. 60, pp. 41-45 (1998).
Kuo, C. H., Yuan, F. and Hill, D. O., “Kinetics of Oxidation of Ammonia in Solutions Containing Ozone with or without Hydrogen Peroxide,” Ind. Eng. Chem. Res., Vol. 36, pp. 4108-4113 (1997).
Legrini, O., Oliveros, E. and Braun, A. M., “Photochemical Processes for Water Treatment,” Chem. Rev., Vol. 93, pp. 671-698 (1993).
Liao, Q. N., Ji, F., Li, J. C., Zhan, X. and Hu, Z. H., “Decomposition and Mineralization of Sulfaquinoxaline Sodium during UV/H2O2¬ Oxidation Processes,” Biochem. Eng. J., Vol. 284, pp. 494-502 (2016).
Lin, L., Chen J., Xu, Z., Yuan, S., Cao, M., Liu, H. and Lu, X., “Removal of Ammonia Nitrogen in Wastewater by Microwave Radiation: A Pilot-Scale Study,” J. Hazard. Mater., Vol. 168, pp. 862-867 (2009).
Lin, L., Yuan, S., Chen, J., Xu, Z. and Lu, X., “Removal of Ammonia Nitrogen in Wastewater by Microwave Radiation,” J. Hazard. Mater., Vol. 161, pp. 1063-1068 (2009).
Liu, N., Zheng, M., Sijak, S., Tang, L., Xu, G. and Wu, M., “Aquatic Photolysis of Carbamazepine by UV/H2O2 and UV/Fe(II) Processes,” Res. Chem. Intermed., Vol. 41, pp. 7015-7028 (2015).
Liu, Y., Li, L. and Goel, R., “Kinetic Study of Electrolytic Ammonia Removal using Ti/IrO2 as Anode under Different Experimental Conditions,” J. Hazard. Mater., Vol. 167, pp. 959-965 (2009).
Lou, X., Xiao, D., Fang, C., Wang, Z., Liu, J., Guo, Y. and Lu, S., “Comparison of UV/Hydrogen Peroxide and UV/Peroxydisulfate Processes for the Degradation of Humic Acid in the Presence of Halide Ions,” Environ Sci Pollut Res, Vol. 23, pp. 4778-4785 (2016).
Maria, K., Dionissios, M. and Despo, K., “Removal of Residual Pharmaceuticals from Aqueous System by Advanced Process,” Environ. Int, Vol. 35, pp. 402-417 (2009).
Mota, A. L. N., Albuquerque, L. F., Beltrame, L. T. C., Chiavone-Filho, O., Machulek Jr., A. and Nascimento, C. A. O., “Aavanced Oxidation Processes and Their Application in the Petroleum Industry: A Review,” Brazilian Journal of Petroleum and Ga, Vol. 2(3), pp. 122-142 (2008).
Ou, H. H., Hoffmann, M. R., Liao, C. H., Hong, J. H. and Lo, S. L., “Photocatalytic Oxidation of Aqueous Ammonia over Platinized Microwave-Assisted Titanate Nanotubes,” Appl. Catal., B, Vol. 99, pp. 74-80 (2010).
Ou, H. H., Liao, C. H., Liou, Y. H., Hong, J. H. and Lo, S. L., “Photocatalytic Oxidation of Aqueous Ammonia over Microwave-Induced Titanate Nanotubes,” Environ. Sci. Technol., Vol. 42, pp. 4507-4512 (2008).
Pan, J. and Chen, Y., “Oxidative Degradation of Bisphenol A (BPA) by UV/H2O2 Process,” ICBBE, Vol. 5517101 (2010).
Rosal, R., Rodríguez, A., Perdigón-Melón, J. A., Mezcua, M., Hernando, M. D., Letón, P., García-Calvo, E., Agüera, A. and Fernández-Alba, A. R., “Removal of Pharmaceuticals and Kinetics of Mineralization by O3/H2O2 in a Biotreated Municipal Wastewater,” Wat. Res. Vol. 42, pp. 3719-3728 (2008).
Ruffino, B. and Zanetti, M. C., “Experimental Study on the Abatement of Ammonia and Organic Carbon with Ozone,” Desalin. Water Treat., Vol. 37, pp. 1-9 (2009).
Sanchis, S., Polo, A. M., Tobajas, M., Rodriguez, J. J. and Mohedano, A. F., “Coupling Fenton and Biological Oxidation for the Removal of Nitrochlorinated Herbicides from Water,” Wat. Res. Vol. 49, pp. 197-206 (2014).
Shavisi, Y., Sharifnia, S., Hosseini, S. N. and Khadivi, M. A., "Application of TiO2/Perlite Photocatalysis for Degradation of Ammonia in Wastewater", J. Ind. Eng. Chem., Vol. 20l, pp. 278-283 (2014).
Shen, Y. S., Ku, Y. and Lee, K. C., “Decomposition of Chlorophenols in Aqueous Solution by UV/H2O2 Process,” Toxicol. Environ. Chem. Vol. 54, pp. 51-67 (1996).
Shibuya, S., Aoki, S., Sekine, Y. and Mikami, I., “Influence of Oxygen Addition on Photocatalytic Oxidation of Aqueous Ammonia over Platinum-loaded TiO2,” Appl. Catal., B, Vol. 138-139, pp. 294-298 (2013).
Ternes, T. A., Meisenheimer, M., McDowell, D., Sacher, F., Brauch, H. J, Haist-Gulde, B., Preuss, G., Wilme, U. and Zulei-Seibert, N., “Removal of Pharmaceuticals During Drinking Water Treatment,” Environ. Sci. Techno., Vol. 36, pp. 3855-3863 (2002).
Venkatadri, R. and Peters, R. W., “Chemical Oxidation Technologies: Ultraviolet Light/Hydrogen Peroxide, Fenton's Reagent, and Titanium Dioxide-assisted Photocatalysis,” Hazardous Waste and Hazardous, Vol. 10(2), pp. 107-149 (1993).
Vogelpohl, A. and Kim, S. M., “Advanced Oxidation Processes (AOPs) in Wastewater Treatment,” J. Ind. Eng. Chem., Vol. 10, pp. 33-40 (2004).
Von Gunten, U. and Hoigne, J., “Bromate Formation during Ozonization of Bromide-Containing Waters: Interaction of Ozone and Hydroxyl Radical Reductions,” Environ. Sci. Techno., Vol. 28, pp. 1234-1242 (1994).
Wang, L. S., “Decomposition of Nitrogen-Containing Compounds in Aqueous Solution by UV/Hydrogen Peroxide Process,” Master Dissertation of National Taiwan University of Science and Technology, Taiwan Taipei, (1995).
Wang, S., Wu, X., Wang, Y., Li, Q. and Tao, M., “Removal of Organic Matter and Ammonia Nitrogen from Landfill Leachate by Ultrasound,” Ultrason. Sonochem. Vol. 15, pp. 933-937 (2008).
Weir, B. A., Sundstrom, D. W and Klei, H. E., “Destruction of Benzene by Ultraviolet Light-Catalyzed Oxidation with Hydrogen Peroxide,” Haz. Waste Haz. Mater., Vol. 4, pp. 165-176 (1993).
Wu, J. J., Muruganandham, M., Chang, L. T., Yang, J. S. and Chen, S. H., “Ozone-Based Advanced Oxidation Processes for the Decomposition of N-Methyl-2-Pyrolidone in Aqueous Medium,” Ozone: Science and Engineering, Vol. 29, pp. 177-183 (2007).
Xu, B., Gao, N. Y., Sun, X. F., Xia, S. J., Rui, M., Simonnot, M. O., Causserand, C. and Zhaoa, J. F., “Photochemical Degradation of Diethyl Phthalate with UV/H2O2,” J. Hazard. Mater. Vol. B139, pp. 132-139 (2007).
Yan, W., Wang, D. and Botte, G. G., “Electrochemical decomposition of urea with Ni-based catalysts,” Appl. Catal., B, Vol. 127, pp. 221-226 (2012).
Yang, M., Uesugi, K. and Myoga, H., “Ammonia Removal in Bubble Column by Ozonation in The Presence of Bromide,” Wat. Res. Vol. 33, pp. 1911-1917 (1998).
Yuan, F., Hu, C., Hu, X., Qu, J. and Yang, M., “Degradation of Selected Pharmaceuticals in Aqueous Solution with UV and UV/H2O2,” Water Res., Vol. 43, pp. 1766-1774 (2009).
Yuzawa, H., Mori, T., Itoh, H. and Yoshida, H., “Reaction Mechanism of Ammonia Decomposition to Nitrogen and Hydrogen over Metal Loaded Titanium Oxide Photocatalyst,” J. Phys. Chem., Vol. 116, pp. 4126-4136 (2012).
Zang, Y. and Farnood, R., “Effects of Hydrogen Peroxide Concentration and Ultraviolet Light Intensity on Methyl tert-Butyl Ether Degradation Kinetics,” Chem. Eng. Sci., Vol. 60, pp. 1641-1648 (2005).
Zhang, X., Li, W., Blatchley, E. R., Wang, X. and Ren, P., “UV/chlorine Process for Ammonia Removal and Disinfection By-Product Reduction Comparison with Chlorination,” Water Res. Vol. 68, pp. 804-811 (2015).
Zhou, C., Gao, N., Deng, Y., Chu, W., Rong, W. and Zhou, S., “Factors Affecting Ultraviolet Irradiation/Hydrogen Peroxide (UV/H2O2) Degradation of Mixed N-nitrosamines in Water,” J. Hazard. Mater., Vol. 231-232, pp. 43-48 (2012).
Zhu, X., Castleberry, S. R., Nanny, M. A. and Butler, E. C., “Effect of pH and Catalyst Concentration on Photocatalytic Oxidation of Aqueous Ammonia and Nitrite in Titanium Dioxide Suspensions,” Environ, Sci. Technol., Vol. 39, pp. 3784-3791 (2005).
Zwiener, C and Frimmel, H., “Oxidative Treatment of Pharmaceuticals in Water,” Water Res, Vol. 34, pp. 1881-1885 (2000).

QR CODE