簡易檢索 / 詳目顯示

研究生: 楊沂綺
Yi-Chi Yang
論文名稱: 台北捷運路網脆弱度分析
Vulnerability Analysis of Taipei Mass Rapid Transit Network
指導教授: 林希偉
Shi-Woei Lin
口試委員: 王敏
Min Wang
葉瑞徽
Ruey-Huei Yeh
林希偉
Shi-Woei Lin
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 73
中文關鍵詞: 捷運脆弱度拓樸旅客流量
外文關鍵詞: Mass Rapid Transit (MRT), vulnerability, topology, passenger flow
相關次數: 點閱:218下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

台北捷運是雙北市民通勤交通工具之首選,但這樣的城市軌道交通系統往往
可能因不同原因需中斷服務,不管是系統異常、人為事件(例如台北捷運隨機殺
人案件)或者自然災害(例如地震),都可能導致捷運停駛或者運量下降,若能
提早準備,讓捷運系統在意外發生時能夠快速反應,則能減少損失。本研究考量
捷運系統的拓撲架構以及路網中不同站點間的乘客流量建構出用以評估捷運路
網及站點脆弱度( vulnerability)的指標,並且分析在隨機故障及蓄意攻擊下捷運
系統之效能,研究中除了由站點失效的觀點確 認路網中的重要站點之外,當採用
路線觀點進行評估時,亦發現淡水信義線因為高旅客流量、高站點數、站點重要
性高,因而被攻擊時導致整條路線停駛之脆弱度最高。本研究結果可做為捷運公
司或交通管理單位之決策參考,針對這些高脆弱度的站點 /路線加強防護,以提高
捷運系統的穩健性。


Taipei Mass Rapid Transit (Taipei MRT) is considered the most important transportation system for commuters in Taipei and New Taipei cites. However, the urban rail transit systems like Taipei MRT may often be interrupted for different reasons. System anomalies, human events (e.g., the Taipei MRT random killing case) or natural disasters (e.g., earthquakes) may all cause the MRT operation to stop or cause the traffic volume to drop. This study analyzes the vulnerability of Taipei MRT from both station and line operation perspective. In particular, not only the network topology structure of the MRT system but also the passenger flow between different stations were considered to construct indicators for evaluating the system and stations vulnerability, and the effectiveness of MRT system under the random failure and deliberate attacks. Results show that Taipei MRT system is the most vulnerable when Red line is attacked and entire line is out of operation because of its high passenger flow, high number of stations, and high critical stations. Results and the important managerial implication of this study may be used by managers or policy makers in relevant department to improve the reliability and robustness of the public transportation services.

摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 研究動機 1 第二章 文獻回顧 3 2.1 交通脆弱度的定義 3 2.2 交通脆弱度的衡量指標 5 2.3 交通脆弱度實證研究 6 第三章 研究方法 9 3.1 台北捷運路網架構 9 3.2 網路特徵 10 3.2.1 小世界 10 3.2.2 無尺度 14 3.3 網路衡量指標 15 3.3.1 網路中心性指標 16 3.3.2 TOPSIS法評估站點重要性 17 3.3.3 脆弱度指標 18 3.4 模擬失效方式 19 3.4.1 站點失效 19 3.4.2 路線失效 20 第四章 研究結果 21 4.1 台北捷運流量分析 21 4.2 網路特徵 22 4.2.1 小世界網路-平均路徑長度與聚集係數 22 4.2.2 小世界網路-全局效率與當地效率 26 4.2.3 無尺度網路 27 4.3 TOPSIS重要性排序 31 4.3.1 中心性 31 4.3.2 TOPSIS法重要性排序 33 4.3.3 驗證TOPSIS法是否有效 35 4.4 模擬站點失效 38 4.4.1 最大連接子圖比例 39 4.4.2 完整率 41 4.4.3 可到達率 42 4.4.4 相對效率 44 4.5 模擬路線失效 45 4.5.1 路線失效影響其他路線通行 45 4.5.2 路線失效不影響其他路線通行 48 第五章 結論與建議 52 5.1 結論 52 5.2 研究限制與未來研究建議 53 參考文獻附件 57 附件1 捷運站代碼表捷運站代碼表 57 附件2 TOPSIS法過程法過程 59

Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. science, 286(5439), 509-512.
Berdica, K. (2002). An introduction to road vulnerability: what has been done, is done and should be done. Transport policy, 9(2), 117-127.
Chopra, S. S., Dillon, T., Bilec, M. M., & Khanna, V. (2016). A network-based framework for assessing infrastructure resilience: a case study of the London metro system. Journal of The Royal Society Interface, 13(118), 1-11.
Chen, W., Li, Z., Ai, Y., & Ju, Y. (2018, October). Research on Reliability of Chengdu Rail Transit Network Based on Complex Network Theory. In International Conference on Smart Vehicular Technology, Transportation, Communication and Applications(pp. 201-207). Springer, Cham.
Derrible, S., & Kennedy, C. (2010). The complexity and robustness of metro networks. Physica A: Statistical Mechanics and its Applications, 389(17), 3678-3691.
De-Los-Santos, A., Laporte, G., Mesa, J. A., & Perea, F. (2012). Evaluating passenger robustness in a rail transit network. Transportation Research Part C: Emerging Technologies, 20(1), 34-46.
Du, Y., Gao, C., Hu, Y., Mahadevan, S., & Deng, Y. (2014). A new method of identifying influential nodes in complex networks based on TOPSIS. Physica A: Statistical Mechanics and its Applications, 399, 57-69.
Erdős, P.; Rényi, A. (1959). On Random Graphs, I. Publicationes Mathematicae. 6: 290–297.
Faturechi, R., & Miller-Hooks, E. (2014). Measuring the performance of transportation infrastructure systems in disasters: A comprehensive review. Journal of infrastructure systems, 21(1), 04014025, 1-15.
Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. Physical review letters, 87(19), 198701, 1-4.
Hong, L., Yan, Y., Ouyang, M., Tian, H., & He, X. (2017). Vulnerability effects of passengers' intermodal transfer distance preference and subway expansion on complementary urban public transportation systems. Reliability Engineering & System Safety, 158, 58-72.
Mattsson, L. G., & Jenelius, E. (2015). Vulnerability and resilience of transport systems–A discussion of recent research. Transportation Research Part A: Policy and Practice, 81, 16-34.
Newman, M. (2010). Networks: An Introduction. Oxford University Press.
Rodríguez-Núñez, E., & García-Palomares, J. C. (2014). Measuring the vulnerability of public transport networks. Journal of transport geography, 35, 50-63.
Sun, D. J., & Guan, S. (2016). Measuring vulnerability of urban metro network from line operation perspective. Transportation Research Part A: Policy and Practice, 94, 348-359.
Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’networks. nature, 393(6684), 440-442.
黃傳楷 , & 王聖鐸 . (2017). 臺北捷運路網結構之脆弱度分析 . 地理研究 , (66), 1-16.
謝承憲 , 馮正民 , & 柯旻嬋 . (2014). 構建都會區運輸路網脆弱度評量模式 . 運輸
學刊 , 26(3), 349-372.
謝承憲 , 馮正民 , & 賴怡心 . (2015). 臺灣西部城際旅客運輸路網脆弱度之評估模
式 . 都市與計劃 , 42(4), 367-388.
政府資料開放平台 -臺北捷運各站進出量統計。網址 :https://data.gov.tw/dataset/61753。 上網時間 :2019/4/28。
政府資料開放平台 -臺北捷運系統相鄰兩站間之行駛時間、停靠站時間。網址 : https://data.gov.tw/dataset/61792。 上網時間 :2019/4/28。

無法下載圖示 全文公開日期 2024/07/24 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE