簡易檢索 / 詳目顯示

研究生: 黃煜珅
Yu-Shen Huang
論文名稱: 離心式泵浦之性能優化與模擬分析
Performance Optimization of the High-Pressure Centrifugal Pump
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 林榮慶
Zone-Ching Lin
周永泰
Yung-Tai Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 263
中文關鍵詞: 離心式泵浦汔蝕現象導流小翼數值模擬
外文關鍵詞: Centrifugal Pump, Cavitation, Guiding Blade, Computational Fluid Dynamics
相關次數: 點閱:216下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

摘要
泵浦係人類生活不可或缺的必需品,其中離心泵的優點是構造簡單便於製造,且有較高之靜壓效率而成為最廣泛使用的泵浦,故提升其靜壓效率也成為本文之研究目標。另外,因CFD模擬技術已趨近成熟,故本研究採用套裝軟體Ansys Fluent為主要分析工具,首先模擬原始設計泵浦之流場,探討其流場型態、性能和效率,並彙整提出流場缺失;觀察到葉片間存在嚴重渦流,因此據以擬定多項葉輪改良之方案,考量參數包括葉輪入口面積、葉片出入口角、葉片數、葉輪高度以及導流小翼等,最後再搭配不同出入口管徑以改善汽蝕現象。
從參數分析的數值結果可知,葉輪入口面積適度縮小與增加葉片,皆有助於提升泵浦性能,且優化改良方案相較於原始設計可增加4.44 % 最大壓力。但此靜壓提升仍對高阻抗的應用環境不明顯,且輸出流量也高於實際需求,因此藉由泵浦定律在固定需求功率下,結合縮小葉輪高度與提升轉速方式,犧牲部份的流量將其最大壓力作強化,成功地將最大壓力增幅達到原始設計的15.36 %。另外設置小翼做最適化設計來引導流體,達到大幅減少葉片間之渦流和提高能量使用效率,數值計算與分析結果顯示,相較於原始設計提升6.6 % 的效率;最後將葉輪搭配多種出入口管徑,來改善泵浦汽蝕現象,並重新審視葉輪入口面積,以確保改良泵浦之性能達到最佳值。
歸納上述系統化CFD計算與評估結果,本研究得到最大壓力、最高效率與最佳汽蝕改善的改良方案,其中最大壓力方案令原始設計的71.41 psi提升至82.51 psi;最高效率方案從49.9 % 提升至56.5 % 之靜壓效率,而最佳汽蝕改善方案在汽蝕易發生的葉輪入口處,其平均壓力相較於原始設計增加41.38 %,有效地降低汽蝕現象之可能。基於高靜壓應用需求考量下,在此選定最大壓力方案和原始設計之完整性能曲線作評比,結果顯示在中高壓的操作需求時,都可提供比原始設計更高壓力的輸出,且最大壓力值和效率也提升達15.34 % 和5.94 %。綜合上述成果顯示,本文所設計的高壓離心式泵浦之性能大幅提升,且所建立之設計流程及參數評估方法,也適用於其他型式泵浦的開發,更可提供為後續研究之重要參考。


Abstract
Among various pump types, centrifugal pump is widely used due to its high static efficiency and simple structure for easy manufacture. Thus, increasing the static pressure and the efficiency of centrifugal pump are in great demand and become the goal of this thesis. With the aids of CFD technology, this study firstly selects Ansys Fluent as the analysis tool to examine flow field, aerodynamic performance, and static efficiency of the reference pump. It follows that serious circulation and reverse flow are visualized within the blade passages, which lead to propose a systematic study on the impeller. The parameters considered here include rotor inlet area, blade angle, blade number, rotor height, and guiding blade inside the blade passage. Consequently, the associated CFD results indicate that reducing the impeller inlet area and increasing the blade number properly can enlarge the maximum pressure by 4.44 %, which is still not sufficient for the high-impedance applications.
Thereafter, several pump alternatives with correlated variations on both rotor height and rotational speed are checked within the framework of pump law under the same power-consumption and rotor-diameter constraints. As a result, a 15.36% increase on maximum pressure is achieved while no significant improvement on the adverse circulation inside blade passage is found. Hence, a thorough investigation on adding the guiding vane between blades is executed to diminish the circulation phenomenon and attain a 6.6% increase on static efficiency. Lastly, several inlet and outlet ducts are connected with the pump to weaken the cavitation possibility by adjusting the pressure distribution. Consequently, this study obtains three proper pump designs aiming to have the best performance on static pressure, static efficiency, and cavitation improvement, respectively. The pressure-orientated pump design can enlarge the maximum static pressure from 71.41 psi to 82.51 psi, which represents a 15.5% increase. And, the energy-efficient pump enhances the original 49.9 % to 56.54 % static pressure efficiency. Moreover, the average pressure on the impeller entrance is higher than that of the original pump by 41.38 %, which effectively reduces the cavitation possibility. In conclusions, the comprehensive design scheme established here has successfully generated proper pump designs to meet different system requirements, and can be used to develop other pump types.

目錄 摘要 I Abstract III 致謝 V 目錄 VI 圖索引 X 表索引 XIII 符號索引 XV 第一章 緒論 1 1.1 前言 1 1.2 泵浦的型式 2 1.3 離心式泵浦之葉輪型式分類 4 1.3.1 葉輪的基本類型 4 1.3.2 葉片式葉輪之類型 6 1.4 文獻回顧 8 1.5 研究動機與方法 15 第二章 泵浦之型式分類與探討 20 2.1 動力式泵浦之工作原理 20 2.1.1 徑向式泵浦 20 2.1.2 軸向式泵浦 23 2.1.3 混流式泵浦 24 2.2 排量式泵浦之工作原理 28 2.2.1 轉動式泵浦 28 2.2.2 往復式泵浦 32 第三章 離心式泵浦之理論與設計 38 3.1 泵浦之揚程定義 38 3.1.1 離心力之壓力水頭理論 39 3.1.2 實際揚程與總揚程 46 3.2 離心泵之效率、特性曲線與操作點 48 3.3 葉輪設計 51 3.3.1 離心式泵浦之葉輪形式 51 3.3.2 葉輪參數設計 54 3.4 NACA翼型之介紹 67 3.4.1 翼剖面建構之基本理論 67 3.4.2 NACA M-series翼剖面設計原理 70 3.4.3 NACA翼剖面標號系統 73 3.5 汽蝕現象 73 3.5.1 泵浦之汽蝕現象 75 3.5.2 汽蝕性能曲線 76 第四章 數值方法 82 4.1 統御方程式 83 4.2 數值之計算理論 84 4.2.1 解題過程 85 4.2.2 網格建立與網格獨立性 88 4.2.3 離散化方式 93 4.2.4 速度與壓力耦合 97 4.3 紊流模型之理論 99 4.4 邊界條件 106 4.4.1 壁面邊界條件 106 4.4.2 流入與流出之邊界條件 111 4.4.3 其它邊界條件 113 第五章 原始離心式泵浦之數值模擬結果 115 5.1 原始設計泵浦模型之建立 115 5.2 網格規劃與獨立性驗證 123 5.2.1 網格之規劃與配置 123 5.2.2 網格之獨立性驗證 128 5.3 原始設計泵浦之數值結果與流場分析 130 5.3.1 原始設計之數值結果 130 5.3.2 原始設計泵浦之流場分析 132 第六章 離心式泵浦之改良方案與數值分析 145 6.1 葉輪改良 146 6.1.1 葉輪入口面積 146 6.1.2 葉片之出口角與入口角 152 6.1.3 葉片間增設小翼 157 6.1.4 葉輪之葉片數 165 6.2 葉輪高度與轉速之調整規劃 173 6.3 小翼的型式與高度之最適化設計 185 6.3.1 小翼型式之最佳化 186 6.3.2 小翼之不同高度設計 191 6.3.3 小翼的操作點之性能特性 196 6.4 泵浦之入口管與出口管的改良 200 6.4.1 入口管徑改良與葉輪入口面積修正 200 6.4.2 出口管徑改良 214 第七章 結論與建議 226 7.1 不同性能需求的最適化改善方案 226 7.2 最終改良與原始設計案例之完整性能曲線比對 228 7.3 建議 237 參考文獻 239

參考文獻
[1] 大町昌義原著,徐景福譯,"渦旋泵浦之設計",正言出版社,1978。
[2] 每日頭條,"原來你是這樣的離心泵!",https://kknews.cc/zh-tw/home/6en5enp.html。
[3] 洪淑美,"左心室輔助器之設計與數值分析",國立台灣科技大學機械工程研究所,碩士論文,2004。
[4] 陳書榮,"橫流式水泵應用於個人電腦水冷系統之數值研究",國立台灣科技大學機械工程研究所,碩士論文,2013。
[5] Church, G., “Centrifugal Pump and Blowers,” Wiley, New York, 1944.
[6] Stepanoff, A. J., “Centrifugal and Axial Flow Pumps,” Wiley, New York,1957.
[7] Tuzson, J., “Centrifugal Pump Design,” Wiley, New York, 2000.
[8] Sorensen, E., “Potential Flow through Centrifugal Pumps and Turbines,” NACA TM-973, 1941.
[9] Acosta, A. J., “An Experimental and Theoretical Investigation of Two-Dimensional Centrifugal Pump Impeller,” Transactions of ASME, Vol. 76, pp. 749-763, 1954.
[10] Bowerman, R. and Acosta, A., “Effect of the Volume on Performance of Centrifugal Pump Impeller,” Transactions of ASME, Vol. 79, pp. 1057-1069, 1957.
[11] Eck, B., “Fans”, Pergamon Press, New York, 1975.
[12] 神宮敬著,張兆豐譯,"泵之設計製圖",台隆書店出版,1992。
[13] Johnson, M. W. and Moore, J., “The Influence of Flow Rate on the Wake in a Centrifugal Impeller,” ASME Journal of Engineering for Power, Vol. 105, pp. 33-39, 1983.
[14] Inoue, M. and Cumpsty, N. A., “Experimental Study of Centrifugal Impeller Discharge Flow in Vaneless and Vaned Diffusers,” ASME Journal of Engineering for Gas Turbine and Power, Vol. 106, pp. 455-467, 1984.
[15] 蘇宗寶,"離心式泵",徐氏基金會出版,1986。
[16] Pierret, S., “Turbomachinery Blade Design Using a Navier-Stokes Solver and Artificial Neural Network,” Transactions of the ASME Journal of Turbomachinery, Vol. 121, pp. 212-231, 1998.
[17] Jude, L. and Homentcovschi, D., "Numerical Analysis of the Inviscid Incompressible Flow in Two-Dimensional Radial-Flow Pump Impellers," Elsevier, Engineering Analysis with Boundary Elements, Vol. 22, pp. 271-279, 1998.
[18] Ardizzon, G. and Pavesi, G.., “Optimum Incidence Angle in Centrifugal Pumps and Radial Inflow Turbines,” Proceedings of the Institution of Mechanical Engineers, Part A, Vol. 212, pp. 97-107, 1998.
[19] Oh, H. W. and Chung, M. K., “Optimum Values of Design Variables versus Specific Speed for Centrifugal Pumps,” Proceedings of the Institution of Mechanical Engineers, Part A, Journal of Power and Energy, Vol. 213, pp. 219-226, 1999.
[20] Yu, S. C. M., Ng, B. T. H., Chan, W. K., and Chua, L. P., “The Flow Patterns within the Impeller Passages of a Centrifugal Blood Pump Model,” Elsevier, Medical Engineering and Physics, Vol. 22, pp. 381-393, 2000.
[21] Marek, Behr, Dhruv, Arora, and Sebastian, Schulte-Eistrup, “Prediction of Flow Features in Centrifugal Blood Pumps,” European Conference on Computational Mechanics ( ECCM ), Cracow, Poland, 2001.
[22] Hong S. S. and Kang S. S., “Flow at the Centrifugal Pump Impeller Exit with Circumferential Distortion of the Outlet Static Pressure,” Transactions of ASME, Journal of Fluids Engineering, Vol. 124, pp. 314-318, 2002.
[23] Goto, A. and Zangendh, M. “Hydrodynamic Design of Pump Diffuser Using Inverse Design Method and CFD,” Transactions of ASME, Journal of Fluids Engineering, Vol. 124, pp. 319-328, 2002.
[24] Goto, A., Nohmi, M., Sakurai, T., and Sogawa, Y., “Hydrodynamic Design System for Pumps Based on 3-D CAD, CFD, and Inverse Design Method,” Transactions of ASME, Journal of Fluids Engineering, Vol. 124, pp. 329-335, 2002.
[25] Gonzalez, J., Fernandez, J., Blanco E., and Santolaria, C., "Numerical Simulation of the Dynamic Effect due to Impeller-Volute Interaction in a Centrifugal Pump," Transactions of ASME, Journal of Fluids Engineering, Vol. 124, pp. 336-345, 2002.
[26] Hamkins, C. P. and Bross, S., "Use of Surface Flow Visualization Methods in Centrifugal Pump Design," Transactions of ASME, Journal of Fluids Engineering, Vol. 124, pp. 346-354, 2002.
[27] Gülich, J. F. and Winterthur, L., "Effect of Reynolds-Number and Surface Roughness on the Efficiency of Centrifugal Pumps," ASME Journal of Fluids Engineering, Vol. 125, pp. 670-679, 2003.
[28] Raúl B., Jorge, P., and Eduardo, B., “Numerical Analysis of the Unsteady Flow in the Near-Tongue Region in a Volute-Type Centrifugal Pump for Different Operating Points,” Elsevier, Computers and Fluids, Vol. 39, pp. 895-870, 2010.
[29] Shigemitsu, T., Fukutomi, J., and Kaji, K., "Influence of Blade Outlet Angle and Blade Thickness on Performance and Internal Flow of Mini. Centrifugal Pump," Proceedings of the ASME-JSME-KSME Joint Fluids Engineering Conference, Hamamatsu, Shizuoka, Japan, July 24-29, 2011.
[30] 楊富翔,"離心式水幫浦CFD及葉片最佳化設計",國立交通大學工學院精密與自動化工程學程,碩士論文,2010。
[31] SlideShare, "泵浦的種類與結構", https://www.slideshare.net/ssuser46e8b4/3-36645282.
[32] Pumpindustry, "What Sort of Progressive Cavity Pumps Are Best Suited to Mining Applications?", https://www.pumpindustry.com.au/ask-an-expert-3.
[33] Kosbest, "Working Principle of Rotary Lobe Pump", https://www.emulsifyingmixer.com/ks-6a-movable-rotary-lobe-pump-for-handle-the-gas-liquid-solid-materials-for-food-cosmetic-transfer-pump.html.
[34] PCM, " What Are the Benefits of Choosing Industrial Dosing Pumps?", https://www.pcm.eu/fr/node/2487.
[35] 梶原滋美著,張兆豐譯,"泵及其使用方法",台隆書店出版,1992。
[36] 蔡書馨,"離心式泵浦效率改良之數值與實驗研究",國立台灣科技大學機械工程研究所,碩士論文,2014。
[37] 賴奕君,"小型空氣清淨機的數值與實驗之整合研究",國立台灣科技大學機械工程研究所,碩士論文,2017。
[38] 吳振輝,"小型後傾式離心扇之設計",國立台灣科技大學機械工程研究所,碩士論文,1997。
[39] Hickling, R. "Nucleation of Freezing by Cavity Collapse and Its Relation to Cavitation Damage," Nature, Vol. 206, pp. 915-917, 29 May 1965.
[40] Cengel, Yunus A. and Cimbala, John M.著,洪俊卿、蔡尤溪、郭仰譯," Fluid Mechanics Fundamentals and Applications,",第三版,東華出版社,2016。
[41] Fluent 6.2 Documentation, Fluent Inc.
[42] Launder, B. E. and Spalding, D. B., “The Numerical Computation of Turbulent Flows,” Computer Methods in Applied Mechanics and Engineering, Vol. 3, pp. 269-289, 1974.
[43] 劉鼎嶽,"機械設計製圖",新文京開發出版股份有限公司,2007。
[44] 黃燕文、林進誠、朱明輝、許世卿,"液氣壓學",修訂版,新文京開發出版股份有限公司,2004。
[45] 潘杰元,"流體機械",第二版,新文京開發出版股份有限公司,2013。
[46] 許宗銘,"液氣壓原理及實習",台科大圖書股份有限公司,2015。
[47] 袁壽其,"低比速離心泵理論與設計",機械工業出版社,1997。
[48] 余國全,"葉片出口角對後傾離心泵的性能影響之數值研究",國立台灣科技大學機械工程研究所,碩士論文,2005。
[49] 孫均瑋,"前傾式離心風機之整合研究",國立台灣科技大學機械工程研究所,碩士論文,2007。

無法下載圖示 全文公開日期 2025/11/09 (校內網路)
全文公開日期 2025/11/09 (校外網路)
全文公開日期 2025/11/09 (國家圖書館:臺灣博碩士論文系統)
QR CODE