簡易檢索 / 詳目顯示

研究生: 陳政瑋
Cheng-Wei Chen
論文名稱: 利用計算流體力學指標針對睡眠呼吸中止症兒童患者腺樣體扁桃腺切除術後之評估
Computational fluid dynamics endpoints for assessment of adenotonsillectomy outcome in children treatment with obstructive sleep apnea syndrome
指導教授: 陳明志
Ming-Jyh Chern
口試委員: 牛仰堯
Yang-Yao Niu
林怡均
Yi-Jiun Lin
林柏廷
Po-Ting Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 74
中文關鍵詞: 兒童睡眠呼吸中止症上呼吸道醫學影像處理計算流體力學直接施力沈 浸邊界法
外文關鍵詞: Children Obstructive Sleep Apnea Syndrome, Upper Airway, Medical Image Processing, Computational Fluid Dynamics, Direct-Forcing Immersed Boundary Method
相關次數: 點閱:230下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 阻塞性睡眠呼吸中止症(OSAS)是一種在幼童期常見的呼吸道疾病,起因於睡眠狀態時的呼吸道狹窄甚至是阻塞。腺樣體扁桃腺切除術被視為一種有效治療兒童睡眠呼吸中止症的手術治療方法。計算流體力學(CFD)已經被廣泛使用於分析上呼吸道的流場特性。本研究分析每位兒童患者手術前及手術後,上呼吸道的流場型態。以往利用電腦斷層掃瞄(CT)重建呼吸道的三維模型,為了建立非結構性網格,必須經過平滑化等步驟,但會造成呼吸道的外型失真。本研究利用VOS函數,直接從電腦斷層掃瞄圖判斷計算域的固體區及流體區,建立上呼吸道模型,並可以直接應用於直接施力沉浸邊界法(DFIB)數值模擬。由於上呼吸道流場的紊流特性,在此研究中使用紊流模型—大渦模擬法來求解流場中的紊流。此研究中,CFD參數包括窄縮率、最小截面積、呼吸道阻力以及噴流角被用來評估兒童睡眠呼吸中止症的嚴重程度以及手術的結果。此外,手術前以及手術後呼吸道體積的變化常被視為上呼吸道手術的成功與否。然而,由於上呼吸道的幾何外型會產生迴流泡,縮小呼吸時呼吸道的有效體積。因此,本研究會利用上呼吸道的有效體積,以及其他流體力學指標評估腺樣體扁桃腺切除術的結果。


    Obstructive sleep apnea syndrome (OSAS) is a common disorder among children, caused by narrowing or collapsed of the upper airway during sleeping. Surgical therapy, adenotonsillectomy, is considered a first choice and recommended as the initial treatment for child patients with OSAS. Before and after adenotonsillectomy surgery of the upper airway of each child patient are investigated in this study. The conventional procedure of reconstructing the upper airway from the Computerized Tomography (CT) scans causes geometry distortion during the process of smoothing. Instead, the volume of solid (VOS) function is used to define the geometry directly from the gray scale value in CT images of the upper airway and three-dimensional models are created in this study. With the implementation of the direct-forcing immersed boundary (DFIB) method, 3D reconstructed models can be straightly applied to the numerical simulations. Due to the turbulence properties in the respiratory tracts, the turbulence model - Large Eddy Simulations (LES) is also employed. Parameters calculated from CFD results are used to evaluate the severity of the children OSAS and are compared with the diagnosis through the polysomnography. Surgery outcomes can also be assessed with CFD endpoints, including stenosis percentage of the upper airway, airway resistance, and jet angle. Furthermore, variation of the airway volume before and after upper airway surgery is usually used to evaluate the success of the surgery. However, te shape of the upper airway results in separation bubbles which reduces the effective volume of the airway for respiratory. As a result, the effective volume of the upper airway as well as other CFD endpoints are utilized to evaluate the anatomical consequences of adenotonsillectomy surgery in this study.

    CONTENTS Chinese Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Nomenclatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii 1 INTRODUCTION 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Children Obstructive Sleep Apnea Syndrome . . . . . . . . . . . . . . . 2 1.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3.1 Computational Fluid Dynamics . . . . . . . . . . . . . . . . . . . . . 3 1.3.2 Direct-Forcing Immersed Boundary Method . . . . . . . . . . . . . . . 5 1.3.3 Turbulence in Upper Airway . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 MATHEMATICAL FORMULAE AND NUMERICAL MODEL 9 2.1 Computational Fluid Dynamics Modeling Based on Computerized Tomography Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.1 Computerized Tomography (CT) data acquisition . . . . . . . . . . . . 10 2.1.2 Image Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 LES governing equations . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Numerical Methods for Solving Navier-Stokes Equations and DFIB Method 15 2.4 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.5 Parallel Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.6 Computational Environment . . . . . . . . . . . . . . . . . . . . . . . 19 2.7 Validation of Direct-Forcing Immersed Boundary Method for Internal Flow 19 2.7.1 Numerical model and boundary conditions . . . . . . . . . . . . . . . 20 2.7.2 Entrance Length, Velocity Pro le, and Pressure Gradient . . . . . . . . 20 2.7.3 Grid Independence . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3 RESULTS AND DISCUSSION 23 3.1 Stenosis of the Upper Airway . . . . . . . . . . . . . . . . . . . . . . 23 3.2 Pressure and Velocity Distributions . . . . . . . . . . . . . . . . . . 24 3.3 Airway Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4 Jet Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.5 E ective Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4 CONCLUSIONS 29 4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

    [1] Chan J., Edman J. C., & Koltai P. J., Obstructive sleep apnea in children. American Academy of Family Physicians. 2004; 69: 1147-1154.
    [2] Chang S. J. & Chae K. Y., Obstructive Sleep Apnea Syndrome in Children: Epidemiology, Pathophysiology, Diagnosis and Sequelae. Korean Journal of Pediatrics. 2010; 53: 863-871.
    [3] Chervin R. D., Dillon J. E., Bassetti C., Ganoczy D. A., & Pituch K. J., Symptoms of Sleep Disorders, Inattention, and Hyperactivity in Children. Sleep. 1997; 20: 1185-1192.
    [4] Ferreira A. M., Clemente V., Gozal D., et al., Snoring in Portuguese Primary School Children. Pediatrics. 2000; 106: e64.
    [5] Lin S. C., Davey M. J., Horne R. S., & Nixon G. M., Screening for Obstructive Sleep Apnea in Children with Down Syndrome. The Journal of Pediatrics. 2014;
    165: 117-122.
    [6] Lumeng J. C., & Chervin R. D., Epidemiology of Pediatric Obstructive Sleep Apnea. Proceedings of the American Thoracic Society. 2008; 5: 242-252.
    [7] Oliverira V. X. & Teng A. Y., The Clinical Usefulness of Sleep Studies in Children. Paediatric Respiratory Reviews. 2016 17: 53-56.
    [8] Steinberg S. & Louis M., Medical Evaluation of Patients with Obstructive Sleep Apnea. In Modern Management of Obstructive Sleep Apnea. Jacksonville, Florida, USA: Springer: 1-6.
    [9] Young T., Palta M., Dempsey, J., Skatrud J., Weber S., & Badr S., The Occurrence of Sleep-Disordered Breathing among Middle-Aged Adults. New England Journal of Medicine. 1993; 328: 1230-1235.
    [10] Guilleminault C., Pelayo R., Leger D., Clerk A., & Bocian R. C., Recognition of Sleep-disordered Breathing in Children. Pediatrics. 1996; 98: 871-882.
    [11] Narang I., & Mathew J. Childhood Obesity and Obstructive Sleep Apnea. Journal of Nutrition and Metabolism. 2012; 2012: 1-8.
    [12] Kavanagh K., & Beckford N. Adenotonsillectomy in Children: Indications and Contraindications. Southern Medical Journal. 1988; 81: 507-511.
    [13] Xu, C., Sin, S., Mcdonough, J. M., Udupa, J. K., Guez, A., Arens, R., & Wootton D. M., Computational Fluid Dynamics Modeling of the Upper Airway of Children with Obstructive Sleep Apnea Syndrome in Steady Flow. Journal of Biomechanics. 2006; 39: 2043-2054.
    [14] Yu, C. C., Hsiao, H. D., Lee, L. C., Yao C, Chen, N. H., Wang, C. J., & Chen, Y. R., Computational Fluid Dynamic Study on Obstructive Sleep Apnea Syndrome Treated with Maxillomandibular Advancement. Journal of Craniofacial Surgery. 2009; 20: 426-430.
    [15] Luo, H., Sin, S., Mcdonough, J. M., Isasi C. R., Arens R., & Wootton D. M., Computational Fluid Dynamics Endpoints for Assessment of Adenotonsillectomy Outcome in Obese Children with Obstructive Sleep Apnea Syndrome. Journal of Biomechanics. 2014; 47: 2498-2503.
    [16] Persak, S. C., Sin, S., Mcdonough, J. M., Arens, R., & Wootton, D. M., Noninvasive Estimation of Pharyngeal Airway Resistance and Compliance in Children Based on Volume-gated Dynamic MRI and Computational Fluid Dynamics. Journal of Applied Physiology. 2011; 111: 1819-1827.
    [17] Lin, C. L., Tawhai, M. H., McLennan, G., & Ho man, E. A., Characteristics of the Turbulent Laryngeal Jet and Its Effect on Airflow in the Human Intra-thoracic Airways. Respiratory Physiology and Neurobiology. 2007; 157: 295-309.
    [18] Chang, K. K., Kim, K. B., McQuilling, M. W., & Movahed, R., Fluid Structure Interaction Simulations of the Upper Airway in Obstructive Sleep Apnea Patients Before and After Maxillomandibular Advancement Surgery. American Journal of
    Orthodontics and Dentofacial Orthopedics. 2018; 153: 895-904.
    [19] Chousangsuntorn, K., Bhongmakapat, T., Apirakkittikul, N., Sungkarat, W., Supakul, N., & Laothamatas J., Upper Airway Areas, Volumes, and Linear Measurements Determined on Computed Tomography During Different Phases of Respiration Predict the Presence of Severe Obstructive Sleep Apnea. Journal of Oral and Maxillofacial Surgery. 2018; 76: 1524-1531.
    [20] Holsbeke, C., et al. Functional Respiratory Imaging as a Tool to Assess Upper Airway Patency in Children with Obstructive Sleep Apnea. Sleep Medicine. 2013; 14: 433-439.
    [21] Peskin, C. S., Flow Patterns Around Heart Valve: a Numerical Method. Journal of Computational Physics. 1972; 10: 252-271.
    [22] Mohd-Yusof, J., Interaction of Massive Particles with Turbulence. Ph.D. Dissertation, Department of Mechanical and Aerospace Engineering, Cornell University. 1996.
    [23] Noor, D. Z., Chern, M. J., & Horng T. L., An Immersed Boundary Method to Solve Fluid-solid Interaction Problems. Computational Mechanic. 2009; 44: 447-453.
    [24] Mylavarapu, G., Murugappan, S., Mihaescu, M., Kalra, M., Khosla, S., & Gutmark, E., Validation of Computational Fluid Dynamics Methodology Used for Human Upper Airway Flow Simulations. Journal of Biomechanics. 2009; 42: 1553-1559.
    [25] Luo, X. Y., Hinton, J. S., Liew T. T., & Tan, K. K., LES Modelling of Flow in a Simple Airway Model. Medical Engineering and Physics. 2004; 26: 403-413.
    [26] Jin, H. H., Fan, J. R., Zeng, M. J., & Cen, K. F., Large Eddy Simulation of Inhaled Particle Deposition within the Human Upper Respiratory Tract. Journal of Aerosol Science. 2007; 38: 257-268
    [27] Lu, M. Z., Liu, Y., Ye, J. Y., & Luo, H. Y., Large Eddy Simulation of Flow in Realistic Human Upper Airways with Obstructive Sleep. Procedia Computer Science. 2014; 29: 557-564.
    [28] Smagorinsky, J., General Circulation Experiments With The Primitive Equations. Monthly Weather Review. 1963; 91: 99-164.
    [29] Zhiyin, Y., Large-eddy Simulation: Past, Present and the Future. Chinese Journal of Aeronautics. 2015; 28: 11-24.
    [30] Lilly, D. K. The Representation of Small-scale Turbulence in Numerical Simulation Experiment. Proceedings of the IBM Scienti c Computing Symposium on Environmental Sciences. 1967; IBM Form No. 320-1951: 195-210.
    [31] Chorin, A. J., A Numerical Method for Solving Incompressible Viscous Flow Problems. Journal of Computational Physics. 1967; 2: 12-26.
    [32] Leonard, B. P., A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation. Computer Methods in Applied Mechanics and Engineering. 1979; 19: 59-98.
    [33] Young, D. M., Iterative Methods for Solving Partial Difference Equations of Elliptical Type. American Mathematical Society. 1950; 76: 92-111
    [34] Zhou, J., Turng, L. S., Three-dimensional Numerical Simulation of Injection Mold Filling with a Finite-volume Method and Parallel Computing. Advances in Polymer Technology. 2006; 25: 247-258.
    [35] Pacheco, P. S., Chapter 1 - Why Parallel Computing? In An introduction to parallel programming. Amsterdam, Netherlands: Morgan Kaufmann; 2011: 1-14
    [36] Yu, C. C., Hsiao, H. D., Lee, L. C., Yao, C. M., Chen, N. H., Wang, C. J., & Chen, Y. R., Computational Fluid Dynamics Study of the Inspiratory Upper Airway and Clinical Severity of Obstructive Sleep Apnea. Journal of Craniofacial Surgery. 2012; 23: 401-405.

    無法下載圖示 全文公開日期 2025/07/27 (校內網路)
    全文公開日期 2025/07/27 (校外網路)
    全文公開日期 2025/07/27 (國家圖書館:臺灣博碩士論文系統)
    QR CODE