簡易檢索 / 詳目顯示

研究生: 翁立穎
Li-Ying Wong
論文名稱: 雙平面噴流數值模擬的流場特徵
Flow characteristics of two parallel plane jets using Computational Fluid Dynamics
指導教授: 黃榮芳
Rong-Fung Huang
口試委員: 林怡均
Yi-Jiun Lin
許清閔
Ching-Min Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 146
中文關鍵詞: 雙平面噴流數值模擬合併點結合點
外文關鍵詞: two parallel plane jets, Computational Fluid Dynamics, merge point, combined point
相關次數: 點閱:188下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究藉由數值模擬方法研究兩道相鄰、平行且等速的二維噴流在不同間隔時的流動型態與流場特性。二維噴流出口之寬度d = 4 mm,改變兩道噴流出口中心之間的距離s,使其與噴流出口寬度d 的比值為s/d =5、10、15,分析噴流出口低雷諾數Rej =200~1600 的雙平面平行噴流特徵。模擬結果發現兩噴流之間迴流區的鞍點,其形狀與結構不受噴流出口間隔距離及雷諾數Rej 變化的影響,而大小與噴流出口間隔距離成正比。噴流於進入匯合區迅速後內縮,同時速度下降,當兩噴流不再內縮而平行前進時,速度開始上升。合併點隨噴流出口間隔距離增加而位置往下游移動,但不受雷諾數影響;結合點則隨噴流出口間隔距離及雷諾數增加而位置往下游移動。相同噴流間隔距離下,隨著雷諾數增高,結合點高度位置越高。中心軸噴流通過結合點後形成結合噴流時,流速與噴流出口速度比值(ujc/uec)於較低雷諾數(200~1200)時大致一致,對於高雷諾數(1400~1600)時比值則明顯較低雷諾數(Rej =200~1200)為高。噴流於匯合區時,兩噴流峰值中間渦度趨近於零;相同噴流出口間隔距離下,高雷諾數(1400~1600)整體渦度變化較低雷諾數(200~1200)為高。


    In this study, the flow pattern and flow field characteristics of two-dimensional jet issuing from two adjacent, parallel with constant velocity at different intervals are analyzed by 2D-CFD. The widths of the jet exits were 4 mm. The ratios of the spacing between the two jets to the width of the jet exits were 5, 10, and 15. The Reynold number range were between 200 and 1600. The CFD results show that there is a saddle point in the recirculation zone between the two jets. The saddle points have similar-shaped structures but are not affected by the different Reynold number and the ratios of the spacing between the two jets to the width of the jet exits. The jets approach each other in the converging region, and velocity is rise. When the two jets are no longer approached each other and advance in parallel, the velocity are decreased. The merge point moves downstream as the nozzle exit spacing increases, but is not affected by the Reynolds number. The combined point moves downstream as the nozzle exit spacing increases or the Reynolds number increases. The ratios of the combined jet velocity and the outlet velocity are the same between Reynolds number 200 and 1200, but are different between Reynolds number 1400 and 1600. In converging region, the vorticity between two jet approaches zero. At the same two jets to the width of the jet exits, the overall vorticity change of Reynolds number between 1400 and 1600 is higher than the Reynolds number of 200 to 1200.

    摘要 Abstract 目錄 符號索引 表圖索引 第一章 緒論 1.1 研究動機 1.2 文獻回顧 1.2.1 平面平行噴流 1.2.2 雙平面平行噴流實驗 1.2.3 雙平面平行噴流數值模擬 1.3 研究目標 第二章 實驗方法 2.1 研究構思 2.1.1 實驗目的 2.2 實驗模型 2.2.1 CAD 幾何模型 2.2.2 邊界和初始條件 2.3 實驗方法 2.3.1 硬體規格 2.3.2 CFD 軟體介紹 2.4 網格獨立性測試 2.4.1 流場分析 2.4.2 沿流線取uy 對y 的積分 2.5 無因次計算域的大小 2.5.1 流場分析 2.5.2 中心軸向偏移速度分佈 第三章平均速度場 3.1 速度向量流線圖 3.1.1 s/d =5 的平均速度向量流線圖 3.1.2 s/d = 10 的平均速度向量流線圖 3.1.3 s/d = 15 的平均速度向量流線圖 3.2 鄰近合併區局部速度分布圖 3.2.1 s/d = 5 的鄰近合併區局部速度分布圖 3.2.2 s/d = 10 的鄰近合併區局部速度分布圖 3.2.3 s/d = 15 的鄰近合併區局部速度分布圖 3.3 橫向速度梯度 3.3.1 s/d = 5 的橫向速度梯度 3.3.2 s/d = 10 的橫向速度梯度 3.3.3 s/d = 15 的橫向速度梯度 3.4 軸向速度梯度 3.5 合併點及結合點位置比較 第四章 渦度場特徵 4.1 s/d = 5 的渦度場特徵 4.2 s/d = 10 的渦度場特徵 4.3 s/d = 15 的渦度場特徵 第五章 結論與建議 5.1 結論 5.2 建議 參考文獻

    [1] Heskestad, G., “Hot-wire measurements in a plane turbulent jet,” Journal of Applied Mechanics (ASME Transaction), Vol. 32, No. 4, 1965, pp. 721-734.
    [2] Van der Hegge Zijnen, B.G., “Measurements of distribution of heat and matter in a plane turbulent jet of air,” Applied Scientific Research, Sec.A, Vol. 7, No. 4, pp. 227-292.
    [3] Wilson, R.A.M. and Danckwerts, P.V., “Studies in turbulent mixing-II. A hot air jet,” Chemical Engineering Science, Vol. 19, No. 11, 1964, pp. 885-895.
    [4] Bradbury, L.J.S., “The structure of a self-preserving turbulent planar jet,”
    [5] Journal of Fluid Mechanics, Vol. 23, 1965, pp. 31-64.
    [6] Gutmark, E. and Wygnanski, I., “The planar turbulent jet,” Journal of Fluid Mechanics, Vol. 73, No. 3, 1976, pp. 465-495.
    [7] Deo, R.C., Mi. J., and Nathan, G.J., “The influence of nozzle-exit geometric profile on statisticall properties of a turbulent plane jet,” Experimental Thermal and Fluid Science, Vol. 32, 2007, pp. 545-559.
    [8] Hsiao, F.-B., Lim, Y.-C., Huang, J.-M., “On the near-field flow structure and mode behaviors for the right-angle and sharp-edged orifice plane jet,Experimental Thermal and Fluid Science, Vol. 34, 2010, pp. 1282-1289.
    [9] Miller, D.R., and Comings, E.W., “Forced-momentum fields in a dual-jet flow,”Journal of Fluid Mechanics, Vol. 7, No. 2, 1960, pp. 237-256.
    [10] Tanaka, E., “The interference of two-dimensional parallel jets (1st report, experiments on dual jets),” Bulletin of JSME, Vol. 13, No. 56, 1970, pp. 272-280.
    [11] Tanaka, E., “The interference of two-dimensional parallel jets (2nd report,
    experiments on the combined flow of dual jet),” Bulletin of JSME, Vol.17, No. 109, 1974, pp. 920-927.
    [12] Murai, K., Taga, M., and Akagawa, K., “An experimental study on confluence of two two-dimensional jets,” Bulletin of JSME, Vol. 13, No. 56, 1970, pp. 958-964.
    [13] Elbanna, H., Gahin, S., and Rashed, M., “Investigation of two plane parallel jets,” AIAA Journal, Vol. 21, 1983, pp. 986-991.
    [14] Elbanna, H., Sabbagh, J.A., “Interaction of Two Non-Equal Plane Jets”, AIAA Journal, Vol.25, 1987,pp.12–13.
    [15] Ko, N.W.M., and Lau, K.K., “Flow structures in initial region of two interacting parallel plane jets,” Experimental Thermal and Fluid Science, Vol. 2, 1989, pp. 431-449.
    [16] Lin, Y.F. and Sheu, M.J., “Investigation of two plane parallel unventilated jets,”Experiments in Fluids, Vol. 10, No. 1, 1990, pp. 17-22.
    [17] Lin, Y.F. and Sheu, M.J., “Interaction of parallel turbulent plane jets,” AIAA Journal, Vol. 29, No. 9, 1991, pp. 1372–1373.
    [18] Nasr, A. and Lai, J.C.S., “Comparison of flow characteristics in the near field of two parallel plane jets and an offset plane jet,” Physics of Fluids, Vol. 9, No. 10, 1997, pp. 2919-2931.
    [19] Nasr, A. and Lai, J.C.S., “Effects of nozzle spacing on the development of two parallel plane jets,” International Journal of Transport Phenomena, Vol. 2, 2000, pp. 2919-2931.
    [20] Anderson, E.A., SNyder, D.O., and Christensen, J., “Periodic flow between low aspect ratio parallel jets,” Journal of Fluids Engineering (Transaction ASME), Vol. 125, No. 2, 2003, pp. 389-392.
    [21] Fujisawa, N., Nakamura, K., and Srinivas, K., “Interaction of two parallel plane jets of different velocities,” Journal of Visualization, Vol. 7, 2004, pp. 135-142.
    [22] Bunderson, N.E. and Smith, B.L., “Passive mixing control of planeparallel jets,” Experiments in Fluids, Vol. 39, No. 1, 2005, pp. 66-74.
    [23] 陳雅筠,〈雙平面噴流之流場特徵〉,國立台灣科技大學機械工程系碩士論文,台北,台灣,2019。
    [24] Anderson, E.A. and Spall, R.E., “Experimental and numerical investigation of two-dimensional parallel jets,” Journal of Fluids Engineering (ASME Transaction), Vol. 123, No. 2, 2001, pp. 401-406.
    [25] Spall, R.E., Anderson, E.A., and Allen, J., “Momentum flux in plane, parallel jets,” Journal of Fluids Engineering (ASME Transaction), Vol. 126, No. 4, 2004, pp. 665-670.
    [26] Durve, A., Patwardhan, A.W., Banarjee, I., Padmakumar, G., and Vaidyanathan, G., “Numerical investigation of mixing in parallel jets,” Nuclear Engineering and Design, Vol. 242, 2012, pp. 78-90.
    [27] Mondal, T., Das, M.K., and Guha, A., “Periodic vortex shedding phenomenon for various separation distances between two plane turbulent parallel jets,” International Journal of Heat and Mass Transfer, Vol. 99, 2016, pp. 576-588.
    [28] Mohapatra,R.,C., “Investigation on Comparison of Fluid flow Characteristics of Two parallel Plane Jets and an Offset Jet,” International Journal on Recent Technologies in Mechanical and Electrical Engineering, Vol. 4, 2017, pp. 42-45.
    [29] Hnaiena, N. , Marzouka, S., Kolsib,L. , “Numerical study and correlations development on twin-parallel jets flow with non-equal outlet velocities,” International Journal of Heat and Mass Transfer, Vol. 11-8, 2018.

    無法下載圖示 全文公開日期 2024/06/24 (校內網路)
    全文公開日期 2024/06/24 (校外網路)
    全文公開日期 2024/06/24 (國家圖書館:臺灣博碩士論文系統)
    QR CODE