簡易檢索 / 詳目顯示

研究生: 李育誠
Yu-Cheng Li
論文名稱: 20錳-1.6鋁-1碳錳鋁鋼之低溫相變化研究
Phase transformations of a 20Mn-1.6Al-1C steel
指導教授: 鄭偉鈞
Wei-Chun Cheng
口試委員: 王朝正
Chaur-Jeng Wang
李志偉
Jyh-Wei Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 125
中文關鍵詞: 錳鋁鋼相變化穿透式電子顯微鏡
外文關鍵詞: Mn-Al steel, phase transformations, TEM
相關次數: 點閱:254下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要於高錳合金鋼中添加鋁合金元素對其於不同溫度下的相變化影響。此高錳鋼的成份為鐵-19.8錳-1.64鋁-1.03碳(wt.%),故亦稱作錳鋁合金鋼或是錳鋁鋼。本錳鋁鋼的熱處理方式為先經1100℃的高溫固溶處理後,再於850℃以下的溫度進行持溫100小時的恆溫熱處理。
經1100℃固溶處理後的合金鋼,其內的相組成為沃斯田體的基地相及於其內的條狀麻田散體相,此條狀麻田散體相是由FCC微小雙晶所構成。此FCC條狀麻田散體在後續之低溫恆溫處理後,仍繼續存留在沃斯田體的晶粒中。合金鋼再於850至450℃進行恆溫處理後,於沃斯田體晶界處發現有共存的M3C與M23C6碳化物;本錳鋁鋼內存在之M3C與M23C6碳化物的上限溫度是介於800至775℃之間。而當熱處理溫度低於650℃時,本論文亦發現二種各別發生之共析反應,部份介穩態之沃斯田體將會分解成二種碳化物與肥粒體組成之層狀波來體組織以達穩定狀態,以上的碳化物可能為M3C或是M23C6。我們同時也發現M3C與M23C6波來體同時共存於同一沃斯田體晶粒內之現象。本錳鋁鋼之共析反應的上限溫度是介於675至650℃之間,而波來體的恆溫變態曲線的鼻部區域溫度約為525℃。
於晶粒間的方位關係研究,於本錳鋁鋼內M3C波來體中,M3C碳化物與鄰近的肥粒體晶粒間,出現一組平行的晶帶軸上,具有兩組平行之平面:[010]C // [11-1]α;(10-3)C // (011)α及(10-1)C // (112)α,也發現著名之N-W方位關係:[-101]C6 // [001]α;(111)C6 // (110)α,其為FCC的M23C6碳化物與BCC的肥粒體晶粒間之方位關係。


We have studied the phase transformations of a Mn-Al steel at various low temperatures. The composition of the steel is Fe-19.8 Mn-1.64 Al-1.03 C (wt.%). We investigated the effects of adding Mn and Al elements to the M3C and M23C6 pearlites in the high manganese steel. The heat treatment of the steel is heating at 1100℃ for solution heat treatment and holding isothermally at temperatures below 850℃ for 100 hours.
The constituent phase of the steel is single austenite at temperatures between 1100 and 800℃. Irregular martensitic plates appear in the austenitic matrix after the solution heat treatment. The martensitic plates are FCC micro-twins. Irregular martensitic plates still exist in the austenitic matrix after the isothermal holding processes. At temperatures below 800℃, we discovered the coexistence of M3C and M23C6 carbides in the forms of either grain boundaries or pearlitic colonies. The upper temperature limit for the existence of these two carbides is between 800 and 775℃. At temperatures below 650℃, we found two different pearlites: one is M3C pearlite which is lamellae of M3C and ferrite, and the other is M23C6 pearlite which is lamellae of M23C6 and ferrite. These two pearlites are from two separate eutectoid reactions, i.e. the supersaturated austenite has decomposed into two separate colonies of ferrite and carbide. The upper temperature limit for the existence of the two various pearlites is between 675 and 650℃. The nose temperature for appearance of both pearlites is near 525℃.
We have investigated the orientation relationships between different crystals, such as ferrite and carbides, and some results are shown as follows. A variant orientation relationship has been found between M3C carbide and ferritic grains: [010]C // [11-1]α; (10-3)C // (011)α, (10-1)C // (112)α. In M23C6 pearlite, we also discovered the well-known N-W orientation relationship between M23C6 carbide and ferrite: [-101]C6 // [001]α;(111)C6 // (110)α.

第一章 前 言1 第二章 文獻回顧4 2.1 擴散型相變化 (diffusional transformation)4 2.2 層狀反應 (cellular reaction)5 2.3 非擴散型相變化 (diffusionless transformation)6 2.4 合金鋼中之碳化物7 2.5 合金鋼中之波來體11 第三章 實驗方法26 3.1 合金冶鍊26 3.2 合金鑄錠加工27 3.3 合金熱處理28 3.4 試片製作流程29 3.5 分析儀器33 第四章 結果與討論44 4.1 晶界M3C及M23C6碳化物45 4.2 共存的M3C及M23C6波來體組織51 4.3 晶體間之方位關係60 4.4 合金元素對碳化物及波來體組織之影響65 第五章 結 論119 參考文獻122

1.D.A. Porter and K.E. Easterling, “Phase Transformations in Metals and Alloys”, 3rd (2008).
2.C.J. Wang and Y.C. Chang, Materials Chemistry and Physics, 76, pp. 151-161 (2002).
3.W.C. Cheng and H.Y. Lin, Mater. Sci. Eng., A323, pp. 462-466 (2002).
4.S.K. Chen, K.W. Chour, W.B. Lee, C.M. Wan and J.G. Byrne, Mat. Res. Bull., 25, pp. 1115-1119 (1990).
5.T.B. Massalski, “Binary Alloy Phase Diagrams”, 2nd, 2, pp. 1725.
6.W.C. Cheng and C.K. Lai, Scripta Mater., 55, pp. 783-786 (2006).
7.D.S. Zhou and G.J. Shiflet, Scripta Metall., 27, pp. 1215-1218 (1992).
8.C.R. Hutchinson and G.J. Shiflet, Scripta Mater., 50, pp. 1-5 (2004).
9.Y.L. Lin and C.P. Chou, Scripta Metall., 27, pp. 67-70 (1992).
10.H. Huang, D. Gan and P.W. Kao, Scripta Metall., 30, pp. 499-504 (1994).
11.M.C. Li, H. Chang, P.W. Kao and D. Gan, Materials Chemistry and Physics, 59, pp. 96-99 (1999).
12.T.F. Liu and C.M. Wan, Scripta Metall., 19, pp. 727-732 (1985).
13.T.F. Liu and J.C. Tasy, Scripta Metall., 21, pp. 1213-1218 (1987).
14.T.F. Liu and C.C. Wu, Scripta Meatll., 23, pp. 1087-1092 (1989).
15.T.F. Liu and C.C. Wu, Scripta Metall., 23, pp. 1243-1248 (1989).
16.T.F. Liu and C.M. Wan, Scripta Metall., 19, pp. 805-810 (1985).
17.W.C. Cheng, C.F. Liu and Y.F. Lai, Mater. Sci. Eng., A 337, pp. 281-286 (2002).

18.J.W. Lee, C.C. Wu and T.F. Liu, Scripta Mater., 50, pp. 1389-1393 (2004).
19.C.M. Liu, H.C. Cheng, C.Y. Chao and K.L. Ou, J. All. Comp., 488, pp. 52-56 (2009).
20.許中杰,“鐵-20錳-0.5碳合金之時效相變化研究”,國立台灣科技大學機械工程研究所,碩士論文 (2008)。
21.陳崧豪,“鐵-20錳-2鋁合金鋼之相變化研究”,國立台灣科技大學機械工程研究所,碩士論文 (2008)。
22.薛凱云,“鐵-12錳-4鋁-0.5碳合金鋼之亞共析型反應研究”,國立台灣科技大學機械工程研究所,碩士論文 (2007)。
23.黃祥銘,“鐵-13錳-3鋁-0.5碳合金鋼共析反應研究”,國立台灣科技大學機械工程研究所,碩士論文 (2010)。
24.張育仁,“鐵-30錳-1.7鋁-1碳合金之時效相變化研究”,國立台灣科技大學機械工程研究所,碩士論文 (2009)。
25.吳旻紘,“鐵-31錳-1.5鋁-0.6碳合金鋼之時效相變化研究”,國立台灣科技大學機械工程研究所,碩士論文 (2009)。
26.R.E. Reed-Hill, “Physical Metallurgy Principle”, 3rd (1992).
27.McGraw-Hill, “The Science and Design of Engineering Materials”, 2nd (1999).
28.林東一,“鐵-21錳-0.5碳合金之麻田散體相變化研究”,國立台灣科技大學機械工程研究所,碩士論文 (2007)。
29.H.J. Kestenbach, Metallography, 10, pp. 189-199 (1977).
30.G.B. Olson and M. Cohen, L.-C. Met., 28, pp. 107-118 (1972).
31.K.H. Kuo and C.L. JIA, Acta Metall., 33(6) , 991-996 (1985).
32.J. Janovec, M. Svoboda, A. Vyrostkova, A. Kroupa, Mater. Sci. Eng., A, 402, pp. 288-293 (2005).
33.W.F. Smith, “Structure and Properties of Engineering Alloys”, 2nd (1993).
34.C.R. Hutchinson, R.E. Hackenberg, G.J. Shiflet, Acta Mater., 52, pp. 3565-3585 (2004).
35.D.N. Shackleton and P.M. Kelly, Acta Metall., 15, pp. 979 (1967).
36.G.Spanos and H.I. Aaronson, Scripta Metall., 22, pp. 1537-1542 (1988).
37.C.S. Han, W.H. Tian and M. Nemoto, Intermetallics, 1, pp. 209-215 (1993).
38.G.R. Kegg and J.M. Silcock, Scripta Metall., 6, 1083-1086 (1972).
39.M.H. Lewis and B.Hattersley, Acta Metall., 13, pp. 1159-1168 (1965).
40.J.B. Lupton, S. Murphy and J.H. Woodhead, Metall. Trans., 3(11), pp. 2923-2931 (1972).
41.P.H. Pumphrey and J.W. Edington, Acta Metall., 22, pp. 89-94 (1974).
42.P.R. Howell, J.V. Bee and R.W.K. Honeycombe, Metall. Trans., 10A, pp. 1213-1222 (1979).
43.N. Terao and B. Sasmal, Metallography, 13, pp. 117-133 (1980).
44.N. Terao and B. Sasmal, Transactions of the Japan Institute of Metals., 22(6), pp. 379 (1981).
45.K. Campbell and R.W.K. Honeycombe, Metal Sci., 8, pp. 197 (1974).
46.蔡明欽,“鋼顯微組織與性質”,五南圖書股份有限公司 (2004)。
47.黃振賢,“金屬熱處理”,文京出版社,第18版 (2000)。
48.R.J. Dippenaar and R.W.K. Honeycombe, Proc. R. Soc. Lond., A, 333, pp. 455-467 (1973).
49.C.S. Smith, Trans. Am. Soc. Metals, 45, pp. 533 (1953).
50.M.X. Zhang, P.M. Kelly, Meter. Char., 60, pp. 545-554 (2009).
51.許樹恩,吳泰伯,“X光繞射原理與材料結構分析”,中國材料科學學會出版 (1996)。
52.鮑忠興,劉思謙,“近代穿透式電子顯微鏡實務”,滄海書局 (2008)。
53.W.C. Cheng and S.M. Hwang, Metall. Mater. Trans. A, 42, pp. 1760-1766 (2011).

QR CODE