簡易檢索 / 詳目顯示

研究生: 曾翰平
Han-ping Tseng
論文名稱: 利用新穎表面修飾法製備矽/石墨烯奈米複材料應用於鋰離子電池陽極之研究
A Novel Surface Modification Method to Fabricate Silicon/graphene Nanocomposite as Anode Material in Lithium-ion Battery
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 陳貴賢
Kuei-Hsien Chen
林麗瓊
Li-Chyong Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 105
中文關鍵詞: 鋰離子電池陽極Si/graphene複合材料表面修飾法
外文關鍵詞: Li-ion battery, anode, Si/graphene composites, surface modification method
相關次數: 點閱:244下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將使用新穎表面修飾法來製備Si/graphene複合材料,並應用於鋰離子電池之陽極。經表面修飾之Si奈米粒子可與氧化石墨烯形成均勻分散結構,為簡單、符合成本效益製備方式。而為了將製備條件作最適化,本文探討不同還原溫度與不同Si含量對電池的效能影響,同時也比較不同方式製備之樣品。使用表面修飾法製備之樣品(SiG-NMP-500oC)第一圈可逆電容量為1264 mAh/g,到了第30圈電容量仍有第一圈的58 %,與其它製備法比較,呈現較佳的循環電容量與穩定性。為了更進一步提高其循環充放電穩定性,試著加入了2 wt.% VC至電解液中。雖然在初始電容量較低,但到了第40圈,電容量仍有第一圈的80 %,且有著較高的庫倫效率。表示將VC加入至電解液中,可生成較穩定SEI層,進一步提高了電池充放電穩定性。


    In this research, we proposed a novel surface modification method for the preparation of silicon/graphene composites as anode material for lithium ion battery. Our proposed methodology enables us to formulate a stable suspension of Si nanoparticles in solution with graphene oxides. The proposed process offers an easy, cost-effective and commercialization-compatible system for the current lithium ion battery industry. In order to optimize the anode material conditions, we investigated the effect of the Si content in the composites and the effect of GO reduction temperature. Lastly, we compared our process with literature reports. It demonstrated that without the need of additional steps (chemical functionalization) and the need of additional materials (surfactant modification) the comparable capacity and stability performance can be achieved. The sample prepared from our method delivers a reversible capacity of 1264 mAh/g. The capacity at 30th cycle still retained around 68 % of the initial cycle. To further improve the cycling stability, vinylene carbonate (VC) was added to the electrolyte. Even though the initial capacity of electrode in VC-containing electrolyte is lower, the retained capacity after 40 cycles was about 80 % of the initial cycle. In addition, the coulombic efficiency was also found to be higher than the electrodes without the use of VC. This suggests that the addition of VC can form a more stable SEI layer, resulting in better cycling stability.

    摘要 I 誌謝 III 目錄 V 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 二次鋰離子電池的發展簡史 4 1.3 二次鋰離子電池之組成與機制 6 1.4 二次鋰離子電池之各元件介紹 8 1.4.1 正極 (陰極) 8 1.4.2 負極 (陽極) 12 1.4.3 電解液 15 1.4.4 隔離膜 18 1.5 負極材料發展的趨勢 19 1.5.1 鋰金屬 20 1.5.2 碳材 21 1.5.3 鋰-金屬氮化物 24 1.5.4 鋰合金 25 1.5.5 鋰-金屬氧化物 26 1.5.6 錫化物 28 1.5.7 矽化物 29 1.5.8 研究動機 33 第二章 文獻回顧 35 2.1 修飾矽複合材料 35 2.1.1 矽奈米結構 35 2.1.2 矽碳複合材料 40 2.1.3 黏著劑(binder) 44 第三章 實驗 46 3.1 儀器設備 46 3.2 實驗藥品 48 3.3 材料合成 49 3.3.1 氧化石墨烯合成 49 3.3.2 Si/graphene複合材料合成 51 3.3.2.1 簡單混合法 51 3.3.2.2 表面修飾法 53 3.3.2.3 界面活性劑輔助法 55 3.4 材料鑑定與分析 57 3.4.1 XRD粉末繞射分析 57 3.4.2 SEM表面形態分析 57 3.4.3 TGA分析 58 3.4.4 Raman分析 58 3.5 陽極極片製備 59 3.6 鈕扣型電池組裝 61 3.7 鈕扣型電池充放電測試 63 3.8 交流阻抗分析 63 第四章 結果與討論 64 4.1 表面修飾法 64 4.1.1 不同溶劑對Si奈米粒子分散穩定性影響 64 4.1.2 使用表面修飾法分散Si粒子於不同溶劑 68 4.2 不同還原溫度影響探討 70 4.2.1 不同還原溫度之Si/graphene複合材料鑑定 70 4.2.1.1 掃瞄式電子顯微鏡(SEM)表面型態分析 70 4.2.1.2 熱重分析(TGA) 71 4.2.1.3 XRD晶格結構分析 72 4.2.1.4 拉曼(Raman)分析 73 4.2.2 不同還原溫度之Si/graphene複合材料電化學分析 74 4.2.2.1 充放電分析 74 4.2.2.2 交流阻抗分析 77 4.3 不同Si含量影響探討 78 4.3.1 不同Si含量之Si/graphene複合材料鑑定 78 4.3.1.1 掃瞄式電子顯微鏡(SEM)表面型態分析 78 4.3.1.2 熱重分析(TGA) 79 4.3.1.3 XRD晶格結構分析 80 4.3.2 不同Si含量之Si/graphene複合材料電化學分析 81 4.3.2.1 充放電分析 81 4.4 不同方式製備Si/graphene複合材料之比較 85 4.4.1 不同方式製備Si/graphene複合材料之鑑定 85 4.4.1.1 掃瞄式電子顯微鏡(SEM)表面型態分析 85 4.4.1.2 熱重分析(TGA) 87 4.4.1.3 XRD晶格結構分析 88 4.4.1.4 拉曼(Raman)分析 89 4.4.2 不同方式製備Si/graphene複合材料之電化學分析 90 4.4.2.1 充放電分析 90 4.5 添加劑影響探討 93 第五章 結論 96 參考文獻 99 附錄A 105

    1. Cheng, F., J. Liang, Z. Tao, and J. Chen, Functional materials for rechargeable batteries. Advanced Materials, 2011. 23(15): p. 1695-1715.
    2. 工研院產業經濟與趨勢研究中心.
    3. Kobayashi, K., The market status & technology trend for lithium battery. Proceedings of 2004 Taipei international power Forum.
    4. 林振華、林振富, 充電式鋰離子電池之材料與應用. p. 2-2.
    5. Armand, M.B., INTERCALATION ELECTRODES. NATO Conference Series, (Series) 6: Materials Science, 1980. 2: p. 145-161.
    6. Vetter, J., P. Novák, M.R. Wagner, C. Veit, K.C. Möller, J.O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, and A. Hammouche, Ageing mechanisms in lithium-ion batteries. Journal of Power Sources, 2005. 147(1-2): p. 269-281.
    7. 楊模樺, 鋰電池材料技術發展. 工業材料雜誌. 237: p. 137.
    8. Mizushima, K., P.C. Jones, P.J. Wiseman, and J.B. Goodenough, Li xCoO 2 (0<x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 1980. 15(6): p. 783-789.
    9. Fey, G.T.K., P. Muralidharan, C.Z. Lu, and Y.D. Cho, Enhanced electrochemical performance and thermal stability of La2O3-coated LiCoO2. Electrochimica Acta, 2006. 51(23): p. 4850-4858.
    10. Padhi, A.K., K.S. Nanjundaswamy, and J.B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. Journal of the Electrochemical Society, 1997. 144(4): p. 1188-1194.
    11. Chung, S.Y., J.T. Bloking, and Y.M. Chiang, Electronically conductive phospho-olivines as lithium storage electrodes. Nature Materials, 2002. 1(2): p. 123-128.
    12. Mi, C.H., G.S. Cao, and X.B. Zhao, Low-cost, one-step process for synthesis of carbon-coated LiFePO 4 cathode. Materials Letters, 2005. 59(1): p. 127-130.
    13. Mi, C.H., X.B. Zhao, G.S. Cao, and J.P. Tu, In situ synthesis and properties of carbon-coated LiFePO4 as li-ion battery cathodes. Journal of the Electrochemical Society, 2005. 152(3): p. A483-A487.
    14. Croce, F., A. D'Epifanio, J. Hassoun, A. Deptula, T. Olczac, and B. Scrosati, A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode. Electrochemical and Solid-State Letters, 2002. 5(3): p. A47-A50.
    15. Li, C., S. Zhang, F. Cheng, W. Ji, and J. Chen, Porous LiFePO4/NiP Composite nanospheres as the cathode materials in rechargeable lithium-ion batteries. Nano Research, 2008. 1(3): p. 242-248.
    16. Lu, Z., H. Cheng, M. Lo, and C.Y. Chung, Pulsed laser deposition and electrochemical characterization of LiFePO 4-Ag composite thin films. Advanced Functional Materials, 2007. 17(18): p. 3885-3896.
    17. Liu, X.M., Z.D. Huang, S. Oh, P.C. Ma, P.C.H. Chan, G.K. Vedam, K. Kang, and J.K. Kim, Sol-gel synthesis of multiwalled carbon nanotube-LiMn 2O 4 nanocomposites as cathode materials for Li-ion batteries. Journal of Power Sources, 2010. 195(13): p. 4290-4296.
    18. 産業技術総合開発機構, リチウム二次電池構成材料開発の状態と課題. 2007.
    19. 林素琴, 鋰電池材料發展分析. 工研院電子報, 2009.
    20. Abraham, K.M., Recent developments in secondary lithium battery technology. Journal of Power Sources, 1985. 14(1-3): p. 179-191.
    21. Yoshino, A., These ten years and feature of rechargeable battery materials. 2003: p. 110.
    22. Zhang, S.S., A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources, 2006. 162(2 SPEC. ISS.): p. 1379-1394.
    23. Goodenough, J.B. and Y. Kim, Challenges for rechargeable Li batteries. Chemistry of Materials, 2010. 22(3): p. 587-603.
    24. Takehara, Z.I., Future prospects of the lithium metal anode. Journal of Power Sources, 1997. 68(1): p. 82-86.
    25. Nishiyama, K., S.I. Tahara, Y. Uchida, S. Tanoue, and I. Taniguchi, Structural differences in self-assembled monolayers of anthraquinone derivatives on silver and gold electrodes studied by cyclic voltammetry and in situ SERS spectroscopy. Journal of Electroanalytical Chemistry, 1999. 478(1-2): p. 83-91.
    26. Yamaki, J.I., S.I. Tobishima, K. Hayashi, K. Saito, Y. Nemoto, and M. Arakawa, A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. Journal of Power Sources, 1998. 74(2): p. 219-227.
    27. Shi, H., J. Barker, M.Y. Saïdi, R. Koksbang, and L. Morris, Graphite structure and lithium intercalation. Journal of Power Sources, 1997. 68(2): p. 291-295.
    28. 陳金銘, 高容量碳粉材料. 工業材料雜誌, 1997. 100: p. 57.
    29. 黃裕豪, 鋰離子電池錫碳複合陽極材料的電化學行為. 國立台灣科技大學化學工程學系研究所碩士學位論文, 93學年度.
    30. Shodai, T., Y. Sakurai, and T. Suzuki, Reaction mechanisms of Li2.6Co0.4N anode material. Solid State Ionics, 1999. 122(1-4): p. 85-93.
    31. Shodai, T., S. Okada, S. Tobishima, and J. Yamaki, Anode performance of a new layered nitride Li3-xCoxN (x = 0.2-0.6). Journal of Power Sources, 1997. 68(2): p. 515-518.
    32. Winter, M. and J.O. Besenhard, Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochimica Acta, 1999. 45(1): p. 31-50.
    33. Wachtler, M., J.O. Besenhard, and M. Winter, Tin and tin-based intermetallics as new anode materials for lithium-ion cells. Journal of Power Sources, 2001. 94(2): p. 189-193.
    34. 徐雅亭、王復民、楊長榮, 鋰離子電池電解液的發展. 工業材料雜誌, 2006. 237: p. 141.
    35. 吳宇平、戴小兵、馬軍旗、程預江, 鋰離子電池應用與實踐. 化學工業出版社, 2004.
    36. Yu, Y., C.H. Chen, and Y. Shi, A tin-based amorphous oxide composite with a porous, spherical, multideck-cage morphology as a highly reversible anode material for lithium-ion batteries. Advanced Materials, 2007. 19(7): p. 993-997.
    37. Zhang, H.L. and D.E. Morse, Kinetically controlled catalytic synthesis of highly dispersed metal-in-carbon composite and its electrochemical behavior. Journal of Materials Chemistry, 2009. 19(47): p. 9006-9011.
    38. Xia, Y., T. Sakai, T. Fujieda, M. Wada, and H. Yoshinaga, Flake Cu-Sn Alloys as Negative Electrode Materials for Rechargeable Lithium Batteries. Journal of the Electrochemical Society, 2001. 148(5): p. A471-A481.
    39. Idota, Y., T. Kubota, A. Matsufuji, Y. Maekawa, and T. Miyasaka, Tin-based amorphous oxide: A high-capacity lithium-ion-storage material. Science, 1997. 276(5317): p. 1395-1397.
    40. Jung, Y.S., K.T. Lee, J.H. Ryu, D. Im, and S.M. Oh, Sn-carbon core-shell powder for anode in lithium secondary batteries. Journal of the Electrochemical Society, 2005. 152(7): p. A1452-A1457.
    41. Kwon, Y., G.S. Park, and J. Cho, Synthesis and electrochemical properties of lithium-electroactive surface-stabilized silicon quantum dots. Electrochimica Acta, 2007. 52(14): p. 4663-4668.
    42. 顏榮賢, 鋰離子二次電池錫氧化物陽極材料製成及性質研究. 成功大學材料科學及工程學系碩士論文, 1999.
    43. Cho, J., Porous Si anode materials for lithium rechargeable batteries. Journal of Materials Chemistry, 2010. 20(20): p. 4009-4014.
    44. Larcher, D., S. Beattie, M. Morcrette, K. Edström, J.C. Jumas, and J.M. Tarascon, Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries. Journal of Materials Chemistry, 2007. 17(36): p. 3759-3772.
    45. Kim, J., L.J. Cote, F. Kim, W. Yuan, K.R. Shull, and J. Huang, Graphene oxide sheets at interfaces. Journal of the American Chemical Society, 2010. 132(23): p. 8180-8186.
    46. Li, H., X. Huang, L. Chen, Z. Wu, and Y. Liang, High capacity nano-Si composite anode material for lithium rechargeable batteries. Electrochemical and Solid-State Letters, 1999. 2(11): p. 547-549.
    47. Liu, W.R., Z.Z. Guo, W.S. Young, D.T. Shieh, H.C. Wu, M.H. Yang, and N.L. Wu, Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive. Journal of Power Sources, 2005. 140(1): p. 139-144.
    48. Li, H., X. Huang, L. Chen, G. Zhou, Z. Zhang, D. Yu, Y. Jun Mo, and N. Pei, Crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature. Solid State Ionics, 2000. 135(1-4): p. 181-191.
    49. Obrovac, M.N. and L.J. Krause, Reversible cycling of crystalline silicon powder. Journal of the Electrochemical Society, 2007. 154(2): p. A103-A108.
    50. Liu, X.H., L. Zhong, S. Huang, S.X. Mao, T. Zhu, and J.Y. Huang, Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano, 2012. 6(2): p. 1522-1531.
    51. Yu, Y., L. Gu, C. Zhu, S. Tsukimoto, P.A. Van Aken, and J. Maier, Reversible storage of lithium in silver-coated three-dimensional macroporous silicon. Advanced Materials, 2010. 22(20): p. 2247-2250.
    52. Chan, C.K., H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, and Y. Cui, High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology, 2008. 3(1): p. 31-35.
    53. Yang, X., Z. Wen, X. Zhu, and S. Huang, Preparation and electrochemical properties of silicon/carbon composite electrodes. Electrochemical and Solid-State Letters, 2005. 8(9): p. A481-A483.
    54. Wang, G.X., J.H. Ahn, J. Yao, S. Bewlay, and H.K. Liu, Nanostructured Si-C composite anodes for lithium-ion batteries. Electrochemistry Communications, 2004. 6(7): p. 689-692.
    55. Hu, Y.S., R. Demir-Cakan, M.M. Titirici, J.O. Müller, R. Schlögl, M. Antonietti, and J. Maier, Superior storage performance of a Si@SiO x/C nanocomposite as anode material for lithium-ion batteries. Angewandte Chemie - International Edition, 2008. 47(9): p. 1645-1649.
    56. Novoselov, K.S., A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005. 438(7065): p. 197-200.
    57. Chou, S.L., J.Z. Wang, M. Choucair, H.K. Liu, J.A. Stride, and S.X. Dou, Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochemistry Communications, 2010. 12(2): p. 303-306.
    58. Lee, J.K., K.B. Smith, C.M. Hayner, and H.H. Kung, Silicon nanoparticles-graphene paper composites for Li ion battery anodes. Chemical Communications, 2010. 46(12): p. 2025-2027.
    59. Zhou, X., Y.-X. Yin, L.-J. Wan, and Y.-G. Guo, Self-Assembled Nanocomposite of Silicon Nanoparticles Encapsulated in Graphene through Electrostatic Attraction for Lithium-Ion Batteries. Advanced Energy Materials, 2012: p. n/a-n/a.
    60. Yang, S., G. Li, Q. Zhu, and Q. Pan, Covalent binding of Si nanoparticles to graphene sheets and its influence on lithium storage properties of Si negative electrode. Journal of Materials Chemistry, 2012. 22(8): p. 3420-3425.
    61. Liu, W.R., M.H. Yang, H.C. Wu, S.M. Chiao, and N.L. Wu, Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder. Electrochemical and Solid-State Letters, 2005. 8(2): p. A100-A103.
    62. Li, J., R.B. Lewis, and J.R. Dahn, Sodium carboxymethyl cellulose. Electrochemical and Solid-State Letters, 2007. 10(2): p. A17-A20.
    63. Hochgatterer, N.S., M.R. Schweiger, S. Koller, P.R. Raimann, T. Wöhrle, C. Wurm, and M. Winter, Silicon/graphite composite electrodes for high-capacity anodes: Influence of binder chemistry on cycling stability. Electrochemical and Solid-State Letters, 2008. 11(5): p. A76-A80.
    64. Zhang, X., A.C. Coleman, N. Katsonis, W.R. Browne, B.J. Van Wees, and B.L. Feringa, Dispersion of graphene in ethanol using a simple solvent exchange method. Chemical Communications, 2010. 46(40): p. 7539-7541.
    65. 林揚智, 矽奈米粉體分散穩定性之探討. 國立台灣科技大學化學工程學系研究所碩士學位論文, 2010.
    66. Chen, L., K. Wang, X. Xie, and J. Xie, Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries. Journal of Power Sources, 2007. 174(2): p. 538-543.

    無法下載圖示 全文公開日期 2017/07/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE