簡易檢索 / 詳目顯示

研究生: 巫昇峰
Sheng-Feng Wu
論文名稱: 四分之一及半波對稱選擇諧波消除脈波寬度調變策略運用於一多脈波電壓源之多階變流器
A Quarter and Half-Wave Symmetry SHE-PWM for a Multipulse Voltage Source Multilevel Inverter
指導教授: 楊宗銘
Chung-Ming Young
口試委員: 王見銘
Chien-Ming Wang
林長華
Chang-Hua Lin
邱煌仁
Huang-Jen Chiu
陳良瑞
Liang-Rui Chen
劉益華
Yi-Hua Liu
賴炎生
Yen-Shin Lai
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 195
中文關鍵詞: 多脈波變流器選擇特定諧波消除最小平方法近似曲線函數
外文關鍵詞: multi-pulse inverters, selective harmonic elimination pulse-width modul, least square method, approximation curve function
相關次數: 點閱:256下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統三相多脈波變流器之架構,具較低開關頻率及較佳諧波的特性,因此非常適用於中、高功率之應用,但因其多脈波變流器架構之不可控性與不易調節,常導致其應用受到諸多限制。為此,本文提出12及24脈波電壓源之多階層變流器兩個架構,每個架構均由直流-交流二階層變流器及Zig-Zag變壓器所組合而成,以進行輸出電壓波形與電力品質等之分析探討,該二架構在三相電壓平衡情況下,Zig-Zag變壓器除具備系統隔離效果的特性外,亦可抑制或抵消系統之某些特定的諧波;再者,變流器之開關切換角度係採用選擇特定諧波消除脈波寬度調變之四分之一與半波對稱兩種策略,可進一步降低並改善系統輸出電壓之總諧波失真,並達到調節較大輸出電壓範圍之功能。
    最後,變流器之開關角度解係以牛頓-瑞福森之數值方法所求得,藉此可控制變流器的輸出電壓之基本波及消除特定諧波,本文另提出以分段式之最小平方法求得該開關角度解之近似曲線函數,俾利將該函數安置於數位信號處理器內,使系統更易於控制,並降低占用數位信號處理器記憶體之空間;最後,本研究並自行開發其實驗系統,以驗證所提之12及24脈波多階層電壓源兩個架構、脈波寬度調變技術與近似曲線函數等之應用。


    The structure of three-phase traditional multi-pulse inverters that feature lower switching frequency and harmonic characteristics is very suitable for medium and high power applications. But as its multi-pulse inverter structure is neither easily controllable nor adjustable, which normally lead to a big limitation of its applications. In view of the above limitation, this paper proposed 12- and 24-pulse voltage source multilevel inverters, which were composed of DC-AC two-level inverters and Zig-Zag transformers, to study and analyze voltage waveforms and quality of power output. In the proposed structures, and on the condition of three-phase voltage balance, the Zig-Zag transformer demonstrated not only isolation characteristics of the system, but also features of inhibition or counteraction of some specific harmonics. It was further found that, in the use of quarter- and half-wave symmetry strategies for selective harmonic elimination Pulse-Width Modulation (SHE-PWM), switching angles of inverters could further reduce and improve total harmonic distortion of the system output voltage, and lead to better adjustment of a larger range of output voltage.
    Finally, the switching angles of inverter were solved using numerical methods developed by Newton-Raphson to control fundamental of output voltage of the inverter and also eliminate specific harmonics. Besides, an approximation curve function of the switching angles solve, using segmented least square method, was also proposed so that the function could be set into the digital signal processor for easier control of the system and better reduction of the space occupied by the memory of digital signal processor. Last but not least, an experimental system was worked out to verify the applications of the proposed 12- and 24-pulse voltage source structures, the pulse-width modulation technique, and the approximation curve function as well.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 符號索引 VII 圖目錄 X 表目錄 XV 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 4 1.3 論文貢獻 6 1.4 大綱 8 第二章 多脈波與多階層變流器 10 2.1 前言 10 2.2 三相二階電壓源、電流源變流器 10 2.3 多模組轉換器 11 2.4 多階層直流-交流變流器 19 2.5 分析與探討 24 2.5.1 電路架構之元件數 24 2.5.2 調變策略或技巧 25 2.5.2.1 多載波脈波寬度調變 26 2.5.2.2 空間向量脈波寬度調變 30 2.5.2.3 選擇特定諧波消除脈波寬度調變 31 2.5.2.4 空間向量控制脈波寬度調變 34 第三章 多脈波變流器基於傳統二階層變流器及Zig-Zag變壓器 36 3.1 12脈波變流器基於傳統二階層變流器架構 36 3.1.1 12脈波Zig-Zag變壓器 37 3.2 24脈波變流器基於傳統二階層變流器架構 42 3.2.1 24脈波Zig-Zag變壓器架構 42 第四章 選擇諧波消除調變策略 50 4.1 脈波寬度調變策略的種類及波形選用 50 4.2 特定諧波規劃與消除原理 50 4.2.1 週期波之傅立葉分析 50 4.2.2 四分之一對稱奇函數波形分析 54 4.2.3 半波對稱奇函數波形分析 61 4.3 數值分析 64 4.3.1 牛頓-瑞福森法 65 4.3.2 特定諧波消除策略運用牛頓-瑞福森求解法 67 4.4 多項式方程式線上計算角度 92 4.4.1 最小平方差法 93 4.4.2 基於多階多項式之切換角度及相移角度 94 4.4.3 基於分段曲線二階多項式之切換角度及相移角度 106 第五章 硬體架構與軟體規劃 112 5.1 前言 112 5.2 12脈波變流器基於Zig-Zag變壓器硬體架構與軟體規劃 112 5.2.1 12脈波變流器基於Zig-Zag變壓器之硬體架構 112 5.2.2 12脈波變流器基於Zig-Zag變壓器之軟體架構 116 5.3 24脈波變流器基於Zig-Zag變壓器硬體架構與軟體規劃 122 5.3.1 24脈波變流器基於Zig-Zag變壓器之硬體架構 122 5.3.2 24脈波變流器基於Zig-Zag變壓器之軟體架構 126 第六章 模擬與實作結果 132 6.1 12脈波變流器基於傳統二階層變流器模擬與實作 132 6.1.1 系統模擬架構 133 6.1.2 基於方波規劃之12脈波變流器配合Zig-Zag變壓器之模擬與實作 135 6.1.3 12脈波變流器基於特定諧波消除策略規劃 146 6.2 24脈波變流器基於傳統二階層變流器模擬與實作 151 6.2.1 系統模擬架構 151 6.2.2 基於方波規劃之24脈波變流器配合Zig-Zag變壓器之模擬與實作 154 6.2.3 24脈波變流器基於特定諧波消除策略規劃 167 6.3 實驗結果與討論 172 第七章 結論與建議 175 參考文獻 176 附錄 194

    [1] B. K. Bose, “Power Electronics and Motor Drives Recent Progress and Perspective,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 2, pp. 581-588, 2009.
    [2] B. K. Bose, “Energy, Environment, and Advances in Power Electronics,” IEEE Transactions on Power Electronics, Vol. 15, No. 4, pp. 688-701, 2000.
    [3] H. Akagi, “The State-of-the-Art of Power Electronics in Japan,” IEEE Transactions on Power Electronics, Vol. 13, No. 2, pp. 345 - 356, 1998.
    [4] Z. Chen, J. M. Guerrero, and F. Blaabjerg, “A Review of the State of the Art of Power Electronics for Wind Turbines,” IEEE Transactions on Power Electronics, Vol. 24, No. 8, pp. 1859-1875, 2009.
    [5] P. Thounthong, B. Davat, S. Rae, and P. Sethakul, “Fuel Cell High-Power Applications,” IEEE Industrial Electronics Magazine, Vol. 3, No. 1, pp. 32-46, 2009.
    [6] B. K. Bose, “Global Energy Scenario and Impact of Power Electronics in 21st Century,” IEEE Transactions on Industrial Electronics, Vol. 60, No. 7, pp. 2638-2651, 2013.
    [7] M. P. Bahrman, “Overview of HVDC Transmission,” IEEE PSCE-2006, pp. 18-23, 2006.
    [8] K. Fujii, K. Kunomura, K. Yoshida, A. Suzuki, S. Konishi, M. Daiguji, and K. Baba, “STATCOM Applying Flat-Packaged IGBTs Connected in Series,” IEEE Transactions on Power Electronics, Vol. 20, No. 5, pp. 1125-1132, 2005.
    [9] N. Flourentzou, V. G. Agelidis, and G. D. Demetriades, “VSC-Based HVDC Power Transmission Systems: An Overview,” IEEE Transactions on Power Electronics, Vol. 24, No. 3, pp. 592-602, 2009.
    [10] S. Debnath, J. Qin, B. Bahrani, M. Saeedifard, and P. Barbosa, “Operation, Control, and Applications of the Modular Multilevel Converter: A Review,” IEEE Transactions on Power Electronics, Vol. PP, No. 99, pp. 1-18, 2014.
    [11] S. Kouro, M. Malinowski, K. Gopakumar, J. Pou, L. G. Franquelo, Wu Bin, J. Rodriguez, M. A. Perez, and J. I. Leon, “Recent Advances and Industrial Applications of Multilevel Converters,” IEEE Transactions on Industrial Electronics, Vol. 57, No. 8, pp. 2553-2580, 2010.
    [12] J. Rodriguez, J. S. Lai, and F. Z. Peng, “Multilevel Inverters: a Survey of Topologies, Controls, and Applications,” IEEE Transactions on Industrial Electronics, Vol. 49, No. 4, pp. 724-738, 2002.
    [13] L. G. Franquelo, J. Rodriguez, J. I. Leon, S. Kouro, R. Portillo, and M. A. M. Prats, “The Age of Multilevel Converters Arrives,” IEEE Industrial Electronics Magazine, Vol. 2, No. 2, pp. 28-39, 2008.
    [14] J. Rodriguez, L. G. Franquelo, S. Kouro, J. I. Leon, R. C. Portillo, M. A. M. Prats, and M. A. Perez, “Multilevel Converters: An Enabling Technology for High-Power Applications,” Proceedings of the IEEE, Vol. 97, No. 11, pp. 1786-1817, 2009.
    [15] H. Abu-Rub, J. Holtz, J. Rodriguez, and B. Ge, “Medium-Voltage Multilevel Converters—State of the Art, Challenges, and Requirements in Industrial Applications,” IEEE Transactions on Industrial Electronics, Vol. 57, No. 8, pp. 2581-2596, 2010.
    [16] J. Rodriguez, S. Bernet, P. K. Steimer, and I. E. Lizama, , “A Survey on Neutral-Point-Clamped Inverters,” IEEE Transactions on Industrial Electronics, Vol. 57, No. 7, pp. 2219-2230, 2010.
    [17] M. Malinowski, K. Gopakumar, J. Rodriguez, and M. A. rez, “A Survey on Cascaded Multilevel Inverters,” IEEE Transactions on Industrial Electronics, Vol. 57, No. 7, pp. 2197-2206, 2010.
    [18] J. Rodriguez, S. Bernet, B. Wu, J. O. Pontt, and S. Kouro, “Multilevel Voltage-Source-Converter Topologies for Industrial Medium-Voltage Drives,” IEEE Transactions on Industrial Electronics, Vol. 54, No. 6, pp. 2930-2945, 2007.
    [19] A. Nabae, I. Takahashi, and H. Akagi, “A New Neutral-Point-Clamped PWM Inverter,” IEEE Transactions on Industry Applications, Vol. IA-17, No. 5, pp. 518-523, 2007.
    [20] T.A. Meynard, and H. Foch, “Multi-level Conversion: High Voltage Choppers and Voltage Source Inverters,” IEEE PESC-1992, pp. 397-403, 1992.
    [21] F. Z. Peng, J. S. Lai, J.W. McKeever, and J. VanCoevering, “A Multilevel Voltage-Source Inverter with Separate DC Sources for Static VAr Generation,” IEEE Transactions on Industry Applications, Vol. 32, No. 5, pp. 1130-1138, 1996.
    [22] S. Kouro, J. Rebolledo, and J. Rodriguez, “Reduced Switching-Frequency-Modulation Algorithm for High-Power Multilevel Inverters,” IEEE Transactions on Industrial Electronics, Vol. 54, No. 5, pp. 2894-2901, 2007.
    [23] R. Teodorescu, F. Blaabjerg, J.K. Pedersen, E. Cengelci, and P.N. Enjeti, “Multilevel Inverter by Cascading Industrial VSI,” IEEE Transactions on Industrial Electronics, Vol. 49, No. 4, pp. 832-838, 2002.
    [24] D. Soto, R. Pena, L. Reyes, and M. Vasquez, “A Novel Cascaded Multilevel Converter with a Single Nonisolated DC Link,” IEEE PESC-2003, pp. 1627-1632, 2003.
    [25] J. Beristain, J. Bordonau, A. Gilabert, and S. Alepuz, “A New AC/AC Multilevel Converter for a Single-Phase Inverter with HF Isolation,” IEEE PESC-2004, pp. 1998-2004, 2004.
    [26] F. S. Kang, S. J. Park, M. H. Lee, and C. U. Kim, “An Efficient Multilevel-Synthesis Approach and Its Application to a 27-level Inverter,” IEEE Transactions on Industrial Electronics, Vol. 52, No. 6, pp. 1600-1606, 2005.
    [27] J. Dixon, M. Ortuzar, R. Carmi, P. Barriuso, P. Flores, and L. Moran, “Static Var Compensator and Active Power Filter With Power Injection Capability, Using 27-Level Inverters and Photovoltaic Cells,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 1, pp. 130-138, 2009.
    [28] P. Flores, J. Dixon, M. Ortuzar, R. Carmi, P. Barriuso, and L. Moran, “Static Var Compensator and Active Power Filter With Power Injection Capability, Using 27-Level Inverters and Photovoltaic Cells,” IEEE ISIE-2006, pp. 1106-1111, 2006.
    [29] D. A. Paice, Power Electronic Converter Harmonics: Multipulse Methods for Clean Power, New York: IEEE Press, 1996.
    [30] D. Yazdani, A. Bakhshai, and G. Joos, “Multifunctional Grid-Connected Multimodule Power Converters Capable of Operating in Single-Pulse and PWM Switching Modes,” IEEE Transactions on Power Electronics, Vol. 23, No. 3, pp. 1228-1238, 2008.
    [31] D. Madhan Mohan, B. Singh, B. K. Panigrahi, “Harmonic Optimised 24-Pulse Voltage Source Converter for High Voltage DC Systems,” IET Power Electronics, Vol. 2, No. 5, pp. 563-573, 2009.
    [32] B. Mwinyiwiwa, and Z. Wolanski, “Multimodular Multilevel Converters with Input/Output Linearity,” IEEE Transactions on Industry Applications, Vol. 33, No. 5, pp. 1214-1219, 1997.
    [33] J. Kuang, and O. B. Teck, “Series Connected Voltage-Source Converter Modules for Force-Commutated SVC and DC-Transmission,” IEEE Transactions on Power Delivery, Vol. 9, No. 2, pp. 977-983, 1994.
    [34] M. Saeedifard, A. Bakhshai, and G. Joos, “Low Switching Frequency Space Vector Modulators for High Power Multimodule Converters,” IEEE Transactions on Power Electronics, Vol. 20, No. 3, pp. 1310-1318, 2005.
    [35] W. Liqiao, I. Pmg, L. Jianlin, and Z. Zhongchao, “Harmonic Characteristic of Sample Time Staggered Space Vector Modulation for Multi-modular or Multilevel Converters,” IEEE PESC-2004, pp. 4554-4557, 2004.
    [36] M. Saeedifard, H. Nikkhajoei, R. Iravani, and A. Bakhshai, “A Space Vector Modulation Approach for a Multimodule HVDC Converter System,” IEEE Transactions on Power Delivery, Vol. 22, No. 3, pp. 1640-1654, 2007.
    [37] IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems, IEEE Std. 519-1992, 1993.
    [38] H. S. Patel, and R. G. Hoft, “Generalized Techniques of Harmonic Elimination and Voltage Control in Thyristor Inverters: Part I−Harmonic Elimination,” IEEE Transactions on Industry Applications, Vol. IA-9, No. 3, pp. 310-317, 1973.
    [39] H. S. Patel, and R. G. Hoft, “Generalized Techniques of Harmonic Elimination and Voltage Control in Thyristor Inverters: Part II − Voltage Control Techniques,” IEEE Transactions on Industry Applications, Vol. IA-10, No. 5, pp. 666-673, 1974.
    [40] P. N. Enjeti, P. D. Ziogas, and J. F. Lindsay, “Programmed PWM Techniques to Eliminate Harmonics: a Critical Evaluation,” IEEE Transactions on Industry Applications, Vol. 26, No. 2, pp. 302-316, 1990.
    [41] P. N. Enjeti and R. Jakkli, “Optimal Power Control Strategies for Neutral Point Clamped (NPC) Inverter Topology,” IEEE Transactions on Industry Applications, Vol. 28, No. 3, pp. 558-566, 1992.
    [42] S. Jian, S. Beineke, and H. Grotstollen, “Optimal PWM Based on Real-Time Solution of Harmonic Elimination Equations,” IEEE Transactions on Power Electronics, Vol. 11, No. 4, pp. 612-621, 1996.
    [43] T. Kato, “Sequential Homotopy-Based Computation of Multiple Solutions for Selected Harmonic Elimination in PWM Inverters,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 46, No. 5, pp. 586-593, 1999.
    [44] D. Czarkowski, D. V. Chudnovsky, and I. W. Selesnick, “Solving the Optimal PWM Problem for Single-Phase Inverters,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 49, No. 4, pp. 465-475, 2002.
    [45] J. N. Chiasson, L. M. Tolbert, K. J. McKenzie, and Z. Du, “A Complete Solution to the Harmonic Elimination Problem,” IEEE Transactions on Power Electronics, Vol. 19, No. 2, pp. 491-499, 2004.
    [46] V. G. Agelidis, A. Balouktsis, and I. Balouktsis, “On Applying a Minimization Technique to the Harmonic Elimination PWM Control: the Bipolar Waveform,” IEEE Power Electronics Letters, Vol. 2, No. 2, pp. 41-44, 2004.
    [47] J. R. Wells, B. M. Nee, P. L. Chapman, and P. T. Krein, "Selective Harmonic Control: A General Problem Formulation and Selected Solutions", IEEE Transactions on Power Electronics, Vol. 20, No. 6, pp. 1337-1345, 2005.
    [48] D. Zhong, L. M. Tolbert, and J. N. Chiasson, “Active Harmonic Elimination for Multilevel Converters,” IEEE Transactions on Power Electronics, Vol. 21, No. 2, pp. 459-469, 2006.
    [49] V. G. Agelidis, A. Balouktsis, I. Balouktsis, and C. Cossar, “Multiple Sets of Solutions for Harmonic Elimination PWM Bipolar Waveforms: Analysis and Experimental Verification,” IEEE Transactions on Power Electronics, Vol. 21, No. 2, pp. 415-421, 2006.
    [50] M. A. Dahidah, and V. G. Agelidis, “Non-Symmetrical Selective Harmonic Elimination PWM Techniques: The Unipolar Waveform,” IEEE PESC-2007, pp. 1885-1891, 2007.
    [51] M. S. A. Dahidah, and V. G. Agelidis, “Selective Harmonic Elimination PWM Control for Cascaded Multilevel Voltage Source Converters: A Generalized Formula,” IEEE Transactions on Power Electronics, Vol. 23, No. 4, pp. 1620-1630, 2008.
    [52] W. Fei, X. Ruan, and B. Wu, “A Generalized Formulation of Quarter-Wave Symmetry SHE-PWM Problems for Multilevel Inverters,” IEEE Transactions on Power Electronics, Vol. 24, No. 7, pp. 1758-1766, 2009.
    [53] W. Fei, X. Du, and B. Wu, “A Generalized Half-Wave Symmetry SHE-PWM Formulation for Multilevel Voltage Inverters,” IEEE Transactions on Industrial Electronics, Vol. 57, No. 9, pp. 3030-3038, 2010.
    [54] G. S. Konstantinou, and V. G. Agelidis, “Bipolar Switching Waveform: Novel Solution Sets to the Selective Harmonic Elimination Problem,” IEEE ICIT-2010, pp. 696-701, 2010.
    [55] W. Fei, B. Wu, and Y. Huang, “Half-Wave Symmetry Selective Harmonic Elimination Method for Multilevel Voltage Source Inverters,” IET Power Electronics, Vol. 4, No. 3, pp. 342-351, 2011.
    [56] N. Farokhnia, S. H. Fathi, R. Salehi, G. B. Gharehpetian, M. Ehsani, “Improved Selective Harmonic Elimination Pulse-Width Modulation Strategy in Multilevel Inverters,” IET Power Electronics, Vol. 5, No. 9, pp. 1904-1911, 2012.
    [57] M. T. Hagh, H. Taghizadeh, and K. Razi, “Harmonic Minimization in Multilevel Inverters Using Modified Species-Based Particle Swarm Optimization,” IEEE Transactions on Power Electronics, Vol. 24, No. 10, pp. 2259-2267, 2009.
    [58] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A Review of Three-Phase Improved Power Quality AC-DC Converters,” IEEE Transactions on Industrial Electronics, Vol. 51, No. 3, pp. 641-660, 2004.
    [59] B. Singh, S. Gairola, B. N. Singh, A. Chandra, and K. Al-Haddad, “Multipulse AC-DC Converters for Improving Power Quality: A Review,” IEEE Transactions on Power Electronics, Vol. 23, No. 1, pp. 260-281, 2008.
    [60] B. Singh, G. Bhuvaneswari, and V. Garg, “T-connected Autotransformer-Based 24-Pulse AC-DC Converter for Variable Frequency Induction Motor Drives,” IEEE Transactions on Energy Conversion, Vol. 21, No. 3, pp. 663-672, 2006.
    [61] E. J. Cham, and T. R. Specht, “The ANSI 49 Rectifier with Phase Shift,” IEEE Transactions on Industry Applications, Vol. IA-20, No. 3, pp. 615-624, 1984.
    [62] G. Paulillo, C.A.M. Guimaraes, J. Policarpo, G. Abreu, and R.A. Oliveira, “T-ADZ-a Novel Converter Transformer,” IEEE ICHQP-2000, pp. 715-719, 2000.
    [63] A. K. Muthupadhyan, “Tensorial Study of Six Phase Delta-Fork Connected Mercury Arc Rectifier,” IEE-IERE Proceedings-India, Vol. 12, No. 2, pp. 45-54, 1974.
    [64] D. Raja, N. Muraly, V. Vijayavelan, and N. Selvaganesan, “A 24-Pulse AC-DC Converter for Improving Power Quality Using Fork Connected Transformer,” IEEE INCACEC-2009, pp. 1-8, 2009.
    [65] B. Singh, and S. Gairola, “A Fork Connected Auto-Transformer Based 24-Pulse AC-DC Converter,” IEEE IICPE-2006, pp. 183-187, 2006.
    [66] B. Singh, G. Bhuvaneswari, and V. Garg, “A Novel Polygon Based 18-Pulse AC–DC Converter for Vector Controlled Induction Motor Drives,” IEEE Transactions on Power Electronics, Vol. 22, No. 2, pp. 488-497, 2007.
    [67] S. Martinius, B. Halimi, and P. A. Dahono, “A Transformer Connection for Multipulse Rectifier Applications,” IEEE ICPST-2002, pp. 1021-1024, 2002.
    [68] R. Fuentes, J. Qiezada, and I. Saavedra, “Harmonic Losses Measurement at Rated Current and Rated Voltage in 12 Pulses High Current Controlled Transformer-Rectifiers,” IEEE ICHQP-2000, pp. 1065-1072, 2000.
    [69] R. Fuentes, and L. Ternicien, “Harmonics Mitigation in High Current Multipulse Controlled Transformer-Rectifiers,” IEEE ICHQP-2002, pp. 189-195, 2002.
    [70] C. Sewan, O. Junyong, K. Kiyong, and C. Junggoo, “A New 24-pulse Diode Rectifier for High Voltage and High Power Applications,” IEEE PESC-1999, pp. 169-174, 1999.
    [71] C. Sewan, P. N. Enjeti, and I. J. Pitel, “Polyphase Transformer Arrangements with Reduced kVA Capacities for Harmonic Current Reduction in Rectifier-Type Utility Interface,” IEEE Transactions on Power Electronics, Vol. 11, No. 5, pp. 680-690, 1996.
    [72] T. Tanaka, N. Koshio, H. Akagi, and A. Nabae, “A Novel Method of Reducing the Supply Current Harmonics of a 12-Pulse Thyristor Rectifier with an Interphase Reactor,” IEEE IAS-1996, pp. 1256-1262, 1996.
    [73] S. Choi, P. N. Enjeti, H. H. Lee, and I. J. Pitel, “A New Active Interphase Reactor for 12-Pulse Rectifiers Provides Clean Power Utility Interface,” IEEE Transactions on Industry Applications, Vol. 32, No. 6, pp. 1304-1311, 1996.
    [74] B. S. Lee, P. N. Enjeti, and I. J. Pitel, “An Optimized Active Interphase Transformer for Auto-connected 12-Pulse Rectifiers Results in Clean Input Power,” IEEE APEC-1997, pp. 666-671, 1997.
    [75] G. R. Kamath, B. Runyan, and R. Wood, “A Compact Autotransformer Based 12-Pulse Rectifier Circuit,” IEEE IECON-2001, pp. 1344-1349, 2001.
    [76] Y. Nishida, “A Harmonic Reducing Scheme for 3-Phase Bridge 6-Pulse Diode Rectifier,” IEEE IECON-1999, pp. 228-234, 1999.
    [77] G. R. Kamath, D. Benson, and R. Wood, “A Novel Autotransformer Based 18-Pulse Rectifier Circuit,” IEEE APEC-2002, pp. 795-801, 2002.
    [78] D. McGhee, “Status of Magnet Power Supply Development for the APS Storage Ring,” IEEE PAC-1989, pp. 1925-1927, 1989.
    [79] C. Sewan, B. S. Lee, and P. N. Enjeti, “New 24-Pulse Diode Rectifier Systems for Utility Interface of High-Power AC Motor Drives,” IEEE Transactions on Industry Applications, Vol. 33, No. 2, pp. 531-541, 1997.
    [80] S. Choi, P. N. Enjeti, and I. J. Pitel, Autotransformer Configurations to Enhance Utility Power Quality of High Power AC/DC Rectifier Systems,” IEEE PAC-1995, pp. 1985-1987, 1995.
    [81] S. Miyairi, S. Iida, K. Nakata, and S. Masubawa, “New Method for Reducing Harmonics Involved in Input and Output of Rectifier with Interphase Transformer,” IEEE Transactions on Industry Applications, Vol. IA-22, No. 5, pp. 790-797, 1986.
    [82] Y. Nishida, “A 12-Pulse Diode Rectifier Using 3-Phase Bridge 6-Pulse Diode Rectifier with 2 Additional Diodes and an Auto-Transformer,” IEEE PEDS-1999, pp. 75-79, 1999.
    [83] G. Olivier, G. E. April, E. Ngandui, and C. Guimaraes, “Novel Transformer Connection to Improve Current Sharing in High-Current DC Rectifiers,” IEEE Transactions on Industry Applications, Vol. 31, No. 1, pp. 127-133, 1995.
    [84] C. M. Young, S. F. Wu, W. S. Yeh and C. W. Yeh, “A DC-Side Current Injection Method for Improving AC Line Condition Applied in the 18-Pulse Converter System,” IEEE Transactions on Power Electronics, Vol. 29, No. 1, pp. 99-109, 2014.
    [85] C. M. Young, M. H. Chen, C. H. Lai, and D. C. Shih, “A Novel Active Interphase Transformer Scheme to Achieve Three-Phase Line Current Balance for 24-Pulse Converter,” IEEE Transactions on Power Electronics, Vol. 27, No. 4, pp. 1719-1731, 2012.
    [86] E. Wiechmann, R. Burgos, and J. Rodriguez, “High Power Factor Phase Controlled Rectifier Using Staggered Converters,” IEEE IAS-1997, pp. 1390-1397, 1997.
    [87] B. Singh, V. Garg, and G. Bhuvaneswari, “Polygon Connected Autotransformer Based 24-Pulse AC-DC Converter for Power Quality Improvement,” IEEE IICPE-2006, pp. 125-130, 2006.
    [88] B. Singh, G. Bhuvaneswari, and V. Garg, “An Improved Power-Quality 30-Pulse AC–DC for Varying Loads,” IEEE Transactions on Power Delivery, Vol. 22, No. 2 pp. 1179-1187, 2007.
    [89] E. P. Wiechmann, and P. E. Aqueveque, “Filterless High Current Rectifier for Electrolytic Applications,” IEEE IAS-2005, pp. 198-203, 2005.
    [90] S. Choi, and J. Jung, “New Pulse Multiplication Technique Based on 6 Pulse Thyristor Converters for High Power Application,” IEEE APEC-2001, pp. 800-805, 2001.
    [91] S. Choi, “New Pulse Multiplication Technique Based on Six-Pulse Thyristor Converters for High-Power Applications,” IEEE Transactions on Industry Applications, Vol. 38, No. 1, pp. 131-136, 2002.
    [92] T. Tanaka, N. Koshio, H. Akagi, and A. Nabae, “Reducing Supply Current Harmonics,” IEEE Industry Applications Magazine, Vol. 4, No. 5, pp. 31-37, 1998.
    [93] J. Arrillaga, L. Yonghe, C. S. Crimp, and M. Villablanca, “Harmonic Elimination by DC Ripple Reinjection in Generator-Convertor Units Operating at Variable Speeds,” IEE Proceedings C Generation, Transmission and Distribution, Vol. 140, No. 1, pp. 57-64, 1993.
    [94] J. P. G. Abreu, E. A. M. Guimaraes, G. Paulillo, and R. A. Oliveira, “A Power Converter Autotransformer,” IEEE ICHQP-1998, pp. 1059-1063, 1998.
    [95] M. E. Villablanca, and J. Arrillaga, “Pulse Multiplication in Parallel Convertors by Multitap Control of Interphase Reactor,” IEE Proceedings B Electric Power Applications, Vol. 139, No. 1, pp. 13-20, 1992.
    [96] M. Villablanca, J. Abarca, C. Cuevas, A. Valencia, and W. Rojas, “Adjustable Speed Synchronous Motors. I. System Harmonic Reduction,” IEEE IAS-1999, pp. 1988-1993, 1999.
    [97] S. Choi, J. Oh, and J. Cho, “Multi-Pulse Converters for High Voltage and High Power Applications,” IEEE IPEMC-2000, pp. 1019-1024, 2000.
    [98] D. Krug, S. Bernet, S. S. Fazel, K. Jalili, and M. Malinowski, “Comparison of 2.3-kv Medium-Voltage Multilevel Converters for Industrial Medium-Voltage Drives,” IEEE Transactions on Industrial Electronics, Vol. 54, No. 6, pp. 2979-2992, 2007.
    [99] S. S. Fazel, S. Bernet, D. Krug, and K. Jalili, “Design and Comparison of 4-kv Neutral-Point-Clamped, Flying-Capacitor, and Series-Connected H-Bridge Multilevel Converters,” IEEE Transactions on Industry Applications, Vol. 43, No. 4, pp. 1032-1040, 2007.
    [100] K. D. Papastergiou, P. W. Wheeler, and J. C. Clare, “Comparison of Losses in Multilevel Converters for Aerospace Applications,” IEEE PESC-2008, pp. 4307-4012, 2008.
    [101] D. Andler, S. Kouro, M. Perez, J. Rodriguez, and B. Wu, “Switching Loss Analysis of Modulation Methods Used in Neutral Point Clamped Converters,” IEEE PESC-2008, pp. 4662-4668, 2008.
    [102] S. Kouro, M. Perez, H. Robles, and J. Rodriguez, “Switching Loss Analysis of Modulation Methods Used in Cascaded H-bridge Multilevel Converters,” IEEE ECCE-2009, pp. 2565-2571, 2009.
    [103] P. Lezana, J. Pou, T. A. Meynard, J. Rodriguez, S. Ceballos, and F. Richardeau, “Survey on Fault Operation on Multilevel Inverters,” IEEE Transactions on Industrial Electronics, Vol. 57, No. 7, pp. 2207-2218, 2010.
    [104] R. Stala, “Application of Balancing Circuit for DC-Link Voltages Balance in a Single-Phase Diode-Clamped Inverter With Two Three-Level Legs,” IEEE Transactions on Industrial Electronics, Vol. 58, No. 9, pp. 4185-4195, 2011.
    [105] A. Shukla, A. Ghosh, and A. Joshi, “Control of DC Capacitor Voltages in Diode-Clamped Multilevel Inverter Using Bidirectional Buck-Boost Choppers,” IET Power Electronics, Vol. 5, No. 9, pp. 1723-1732, 2012.
    [106] R. Stala, “A Natural DC-Link Voltage Balancing of Diode-Clamped Inverters in Parallel Systems,” IEEE Transactions on Industrial Electronics, Vol. 60, No. 11, pp. 5008-5018, 2013.
    [107] S. Zeliang, H. Xiaoqiong, W. Zhiyong, Q. Daqiang, and J. Yongzi, “Voltage Balancing Approaches for Diode-Clamped Multilevel Converters Using Auxiliary Capacitor-Based Circuits,” IEEE Transactions on Power Electronics, Vol. 28, No. 5, pp. 2111-2124, 2013.
    [108] H. Taghizadeh, and M.T. Hagh, “Harmonic Elimination of Cascade Multilevel Inverters with Nonequal DC Sources Using Particle Swarm Optimization,” IEEE Transactions on Industrial Electronics, Vol. 57, No. 11, pp. 3678-3684, 2010.
    [109] P. N. Tekwani, R. S. Kanchan, and K. Gopakumar, “A Dual Five-Level Inverter-Fed Induction Motor Drive With Common-Mode Voltage Elimination and DC-Link Capacitor Voltage Balancing Using Only the Switching-State Redundancy—Part I,” IEEE Transactions on Industrial Electronics, Vol. 54, No. 5, pp. 2600-2608, 2007.
    [110] S. R. Pulikanti, M. S. A. Dahidah, and V. G. Agelidis, “Voltage Balancing Control of Three-Level Active NPC Converter Using SHE-PWM,” IEEE Transactions on Power Delivery, Vol. 26, No. 1, pp. 258-267, 2011.
    [111] Y. Liu, and F. L. Luo, “Trinary Hybrid Multilevel Inverter Used in STATCOM with Unbalanced Voltages,” IEE Proceedings-Electric Power Applications, Vol. 152, No. 5, pp. 1203-1222, 2005.
    [112] L. M. Tolbert, J. N. Chiasson, D. Zhong, and K. J. McKenzie, “Elimination of Harmonics in a Multilevel Converter with Nonequal DC Sources,” IEEE Transactions on Industry Applications, Vol. 41, No. 1, pp. 75-82, 2005.
    [113] L. Yu, A. Q. Huang, S. Wenchao, S. Bhattacharya, and T. Guojun, “Small-Signal Model-Based Control Strategy for Balancing Individual DC Capacitor Voltages in Cascade Multilevel Inverter-Based STATCOM,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 6, pp. 2259-2269, 2009.
    [114] S. Jianjiang, G. Wei, Y. Hao, Z. Tiefu, and A. Q. Huang, “Research on Voltage and Power Balance Control for Cascaded Modular Solid-State Transformer,” IEEE Transactions on Power Electronics, Vol. 26, No. 4, pp. 1154-1166, 2011.
    [115] M. Sabahi, A. R. M. M. Iranaq, K. M. Bahrami, K. M. Bahrami, and M. B. B. Sharifian, “Harmonics Elimination in a Multilevel Inverter with Unequal DC Sources Using Genetic Algorithm,” IEEE ICEMS-2011, pp. 1-5, 2011.
    [116] T. Zhao, G. Wang, S. Bhattacharya, and A. Q. Huang, “Voltage and Power Balance Control for a Cascaded H-Bridge Converter-Based Solid-State Transformer,” IEEE Transactions on Power Electronics, Vol. 28, No. 4, pp. 1523-1532, 2013.
    [117] J. Napoles, A. J. Watson, J. J. Padilla, J. I. Leon, L. G. Franquelo, P. W. Wheeler, and M. A. Aguirre, “Selective Harmonic Mitigation Technique for Cascaded H-Bridge Converters With Nonequal DC Link Voltages,” IEEE Transactions on Industrial Electronics, Vol. 60, No. 5, pp. 1963-1971, 2013.
    [118] C. Younghoon, T. Labella, J. S. Lai, and M. K. Senesky, “A Carrier-Based Neutral Voltage Modulation Strategy for Multilevel Cascaded Inverters Under Unbalanced DC Sources,” IEEE Transactions on Industrial Electronics, Vol. 61, No. 2, pp. 625-636, 2014.
    [119] Y. Suresh, and A. K. Panda, “Research on a Cascaded Multilevel Inverter by Employing Three-Phase Transformers,” IET Power Electronics, Vol. 5, No. 5, pp. 561-570, 2012.
    [120] A. K. Panda, and Y. Suresh, “Performance of Cascaded Multilevel Inverter by Employing Single and Three-Phase Transformers,” IET Power Electronics, Vol. 5, No. 9, pp. 1694-1705, 2012.
    [121] P. Jayaprakash, B. Singh, and D. P. Kothari, “Reduction in Rating of Voltage Source Converter of DSTATCOM Using a Zig-Zag Transformer,” IEEE ISIE-2012, pp. 1066-1071, 2012.
    [122] M. R. Banaei, H. Khounjahan, and E. Salary, “Single-Source Cascaded Transformers Multilevel Inverter with Reduced Number of Switches,” IET Power Electronics, Vol. 5, No. 9, pp. 1748-1753, 2012.
    [123] J. Pereda, and J. Dixon, “High-Frequency Link: A Solution for Using Only One DC Source in Asymmetric Cascaded Multilevel Inverters,” IEEE Transactions on Industrial Electronics, Vol. 58, No. 9, pp. 3884-3892, 2011.
    [124] J. Dixon, J. Pereda, C. Castillo, and S. Bosch, “Asymmetrical Multilevel Inverter for Traction Drives Using Only One DC Supply,” IEEE Transactions on Vehicular Technology, Vol. 59, No. 8, pp. 3736-3743, 2010.
    [125] J. Dixon, and J. Pereda, “27-Level Converter for Electric Vehicles Using Only One Power Supply,” IEEE VPPC-2010, pp. 1-7, 2010.
    [126] S. S. Geun, K. F. Soon, and P. S. Jun, “Cascaded Multilevel Inverter Employing Three-Phase Transformers and Single DC Input,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 6, pp. 2005-2014, 2009.
    [127] R. Hausmann, and I. Barbi, “Three-Phase Multilevel Bidirectional DC-AC Converter Using Three-Phase Coupled Inductors,” IEEE EECC-2009, pp. 2160-2167, 2009.
    [128] L. Tolbert, and T. G. Habetler, “Novel Multilevel Inverter Carrier-Based PWM Method,” IEEE Transactions on Industry Applications, Vol. 35, No. 5, pp. 1098-1107, 1999.
    [129] Y. Liang and C. O. Nwankpa, “A New Type of STATCOM Based on Cascading Voltage-Source Inverters with Phase-Shifted Unipolar SPWM,” IEEE Transactions on Industry Applications, Vol. 35, No. 5, pp. 1118-1123, 1999.
    [130] G. Carrara, S. Gardella, M. Marchesoni, R. Salutari, and G. Sciutto, “A New Multilevel PWM Method: A Theoretical Analysis,” IEEE Transactions on Power Electronics, Vol. 7, No. 3, pp. 497-505, 1992.
    [131] G. P. Adam, O. A. Lara, G. M. Burt, D. Telford, B. W. Williams, and J. R. McDonald, “Modular Multilevel Inverter: Pulse Width Modulation and Capacitor Balancing Technique,” IET Power Electronics, Vol. 3, No. 5, pp. 702-715, 2010.
    [132] B. Shanthi, and S.P. Natarajan, “Comparative Study on Unipolar Multicarrier PWM Strategies for Five Level Flying Capacitor Inverter,” IEEE INCACEC-2009, pp. 1-7, 2009.
    [133] M. B. Smida, and F. B. Ammar, “Modeling and DBC-PSC-PWM Control of a Three-Phase Flying-Capacitor Stacked Multilevel Voltage Source Inverter,” IEEE Transactions on Industrial Electronics, Vol. 57, No. 7, pp. 2231-2239, 2010.
    [134] P. K. Chaturvedi, S. Jain, and P. Agarwal, “Reduced Switching Loss Pulse Width Modulation Technique for Three-Level Diode Clamped Inverter,” IET Power Electronics, Vol. 4, No. 4, pp. 393-399, 2011.
    [135] I. Colak, R. Bayindir, and E. Kabalci, “Design and Analysis of a 7-Level Cascaded Multilevel Inverter with Dual SDCSs,” IEEE SPEEDAM-2010, pp. 180-185, 2010.
    [136] T. Bruckner, and D. G. Holmes, “Optimal Pulse-Width Modulation for Three-Level Inverters,” IEEE Transactions on Power Electronics, Vol. 20, No. 1, pp. 82-89, 2005.
    [137] N. Celanovic and D. Boroyevic, “A Fast Space-Vector Modulation Algorithm for Multilevel Three-Phase Converters,” IEEE Transactions on Industrial Electronics, Vol. 37, No. 2, pp. 637-641, 2001.
    [138] Y. H. Lee, R. Y. Kim, and D. S. Hyun, “A Novel SVPWM Strategy Considering DC-Link Balancing for a Multi-Level Voltage Source Inverter,” IEEE APEC-1999, pp. 509-514, 1999.
    [139] B. P. McGrath, D. G. Holmes, and T. A. Lipo, “Optimized Space Vector Switching Sequences for Multilevel Inverters,” IEEE Transactions on Industrial Electronics, Vol. 18, No. 6, pp. 1293-1301, 2003.
    [140] J. Mahdavi, A. Agah, A. M. Ranjbar, and H. A. Toliyat, “Extension of PWM Space Vector Technique for Multilevel Current-Controlled Voltage Source Inverters,” IEEE IECON-1999 pp. 583-588, 1999.
    [141] D. G. Holmes, and B. P. McGrath, “Opportunities for Harmonic Cancellation with Carrier-Based PWM for Two-Level and Multilevel Cascaded Inverters,” IEEE Transactions on Industry Applications, Vol. 37, No. 2, pp. 574-582, 2001.
    [142] O. Lopez, J. Alvarez, J. D. Gandoy, and F. D. Freijedo, “Multilevel Multiphase Space Vector PWM Algorithm,” IEEE Transactions on Industrial Electronics, Vol. 55, No. 5, pp. 1933-1943, 2008.
    [143] A. Das, K. Sivakumar, R. Ramchand, C. Patel, and K. Gopakumar, “A Combination of Hexagonal and 12-Sided Polygonal Voltage Space Vector PWM Control for IM Drives Using Cascaded Two-Level Inverters,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 5, pp. 1657-1664, 2009.
    [144] A. K. Gupta, and A. M. Khambadkone, “A Space Vector Modulation Scheme to Reduce Common Mode Voltage for Cascaded Multilevel Inverters,” IEEE Transactions on Power Electronics, Vol. 22, No. 5, pp. 1671-1681, 2007.
    [145] A. K. Gupta, and A. M. Khambadkone, “A General Space Vector PWM Algorithm for Multilevel Inverters, Including Operation in Overmodulation Range,” IEEE Transactions on Power Electronics, Vol. 22, No. 2, pp. 517-526, 2007.
    [146] R. S. Kanchan, K. Gopakumar, and R. Kennel, “Synchronised Carrier-Based SVPWM Signal Generation Scheme for the Entire Modulation Range Extending up to Six-Step Mode Using the Sampled Amplitudes of Reference Phase Voltages,” IET Electric Power Applications, Vol. 1, No. 3, pp. 407-415, 2007.
    [147] A. Cataliotti, F. Genduso, A. Raciti, and G. R. Galluzzo, “Generalized PWM-VSI Control Algorithm Based on a Universal Duty-Cycle Expression: Theoretical Analysis, Simulation Results, and Experimental Validations,” IEEE Transactions on Industrial Electronics, Vol. 54, No. 3, pp. 1569-1580, 2007.
    [148] M. A. S. Aneesh, A. Gopinath, and M. R. Baiju, “A Simple Space Vector PWM Generation Scheme for Any General n-Level Inverter,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 5, pp. 1649-1656, 2009.
    [149] J. I. Leon, S. Vazquez, R. Portillo, L. G. Franquelo, J. M. Carrasco, P. W. Wheeler, and A. J. Watson, “Three-Dimensional Feedforward Space Vector Modulation Applied to Multilevel Diode-Clamped Converters,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 1, pp. 101-109, 2009.
    [150] L. Li, D. Czarkowski, Y. Liu, and P. Pillay, “Multilevel Selective Harmonic Elimination PWM Technique in Series-Connected Voltage Inverters,” IEEE Transactions on Industry Applications, Vol. 36, No. 1, pp. 160-170, 2000.
    [151] S. Sirisukprasert, J. S. Lai, and T. H. Liu, “Optimum Harmonic Reduction with a Wide Range of Modulation Indexes for Multilevel Converters,” IEEE Transactions on Industrial Electronics, Vol. 49, No. 4, pp. 875-881, 2002.
    [152] B. Ozpineci, L. Tolbert, and J. Chiasson, “Harmonic Optimization of Multilevel Converters Using Genetic Algorithms,” IEEE Power Electronics Letters, Vol. 3, No. 3, pp. 92-95, 2005.
    [153] Z. Du, L. M. Tolbert, J. N. Chiasson, and B. Ozpineci, “Reduced Switching-Frequency Active Harmonic Elimination for Multilevel Converters,” IEEE Transactions on Industrial Electronics, Vol. 55, No. 4, pp. 1761-1770, 2008.
    [154] M. Perez, S. Kouro, J. Rodriguez, and B. Wu, “Modified Staircase Modulation with Low Input Current Distortion for Multicell Converters,” IEEE PESC-2008, pp. 1989-1994, 2008.
    [155] V. G. Agelidis, A. I. Balouktsis, and M. S. A. Dahidah, “A Five-Level Symmetrically Defined Selective Harmonic Elimination PWM Strategy: Analysis and experimental validation,” IEEE Transactions on Power Electronics, Vol. 23, No. 1, pp. 19-26, 2008.
    [156] Z. Du, L. M. Tolbert, B. Ozpineci, and J. N. Chiasson, “Fundamental Frequency Switching Strategies of a Seven-Level Hybrid Cascaded H-Bridge Multilevel Inverter,” IEEE Transactions on Power Electronics, Vol. 24, No. 1, pp. 25-33, 2009.
    [157] S. R. Pulikanti, and V. G. Agelidis, “Control of Neutral Point and Flying Capacitor Voltages in Five-Level SHE-PWM Controlled ANPC Converter,” IEEE ICIEA-2009, pp. 172-177, 2009.
    [158] J. Rodriguez, L. Moran, P. Correa, and C. Silva, “A Vector Control Technique for Medium-Voltage Multilevel Inverters,” IEEE Transactions on Industrial Electronics, Vol. 49, No. 4, pp. 882-888, 2002.
    [159] J. Rodríguez, L. Morán, J. Pontt, P. Correa, and C. Silva, “A High-Performance Vector Control of an 11-Level Inverter,” IEEE Transactions on Industrial Electronics, Vol. 51, No. 1, pp. 80-85, 2003.
    [160] A. Das, K. Sivakumar, R. Ramchand, C. Patel, and K. Gopakumar, “A High Resolution Pulse Width Modulation Technique Using Concentric Multilevel Dodecagonal Voltage Space Vector Structures,” IEEE ISIE-2009, pp. 477-482, 2009.
    [161] G. Liliang, and J. E. Fletcher, “A Space Vector Switching Strategy for Three-Level Five-Phase Inverter Drives,” IEEE Transactions on Industrial Electronics, Vol. 57, No. 7, pp. 2332-2343, 2010.
    [162] J. Sun, and H. Grotstollen, “Solving Nonlinear Equations for Selective Harmonic Eliminated PWM Using Predicted Initial Values,” IEEE IECOM-1992, pp. 259-264, 1992.
    [163] P. N. Enjeti, and J. F. Lindsay, “Solving Nonlinear Equations of Harmonic Elimination PWM in Power Control,” Electronics Letters, Vol. 23, No. 12, pp. 656-657, 1987.
    [164] J. N. Chiasson, L. M. Tolbert, K. J. McKenzie, and Z. Du, “A Unified Approach to Solving the Harmonic Elimination Equations in Multilevel Converters,” IEEE Transactions on Power Electronics, Vol. 19, No. 2, pp. 478-490, 2004.
    [165] J. N. Chiasson, L. M. Tolbert, K. J. McKenzie, and D, Zhong, “Elimination of Harmonics in a Multilevel Converter Using the Theory of Symmetric Polynomials and Resultants,” IEEE Transactions on Control Systems Technology, Vol. 13, No. 2, pp. 216-223, 2005.
    [166] J. N. Chiasson, L. M. Tolbert, K. J. McKenzie, and D. Zhong, “Control of a Multilevel Converter Using Resultant Theory,” IEEE Transactions on Control Systems Technology, Vol. 11, No. 3, pp. 345-354, 2003.
    [167] T. J. Liang, R. M. O'Connell, and R. G. Hoft, “Inverter Harmonic Reduction Using Walsh Function Harmonic Elimination Method,” IEEE Transactions on Power Electronics, Vol. 12, No. 6, pp. 971-982, 1997.
    [168] F. Swift, and A. Kamberis, “A New Walsh Domain Technique of Harmonic Elimination and Voltage Control in Pulse-Width Modulated Inverters,” IEEE Transactions on Power Electronics, Vol. 8, No. 2, pp. 170-185, 1993.
    [169] J. A. Asumadu, and R. G. Hoft, “Microprocessor-Based Sinusoidal Waveform Synthesis Using Walsh and Related Orthogonal Functions,” IEEE Transactions on Power Electronics, Vol. 4, No. 2, pp. 234-241, 1989.
    [170] C. F. Zheng, B. Zhang, and D. Y. Qiu, “Solving Switching Angles for the Inverter's Selected Harmonic Elimination Technique with Walsh Function,” IEEE ICEMS-2005, pp. 1366-1370, 2005.
    [171] K. L. Shi, and H. Li, “Optimized PWM Strategy Based on Genetic Algorithms,” IEEE Transactions on Industrial Electronics, Vol. 52, No. 5, pp. 1458-1461, 2005.
    [172] K. Sundareswaran, K. Jayant, and T. N. Shanavas, “Inverter Harmonic Elimination Through a Colony of Continuously Exploring Ants,” IEEE Transactions on Industrial Electronics, Vol. 54, No. 5, pp. 2558-2565, 2007.
    [173] C. G. Hu, Q. J. Wang, W. D. Jiang, Q. Chen, and Q. S Xia, “Optimization Method for Generating SHEPWM Switching Patterns Using Chaotic Ant Colony Algorithm Applied to Three-level NPC Inverter,” IEEE ICEMS-2007, pp. 149-153, 2007.
    [174] R. N. Ray, D. Chatterjee, and S. K. Goswami, “Harmonics Elimination in a Multilevel Inverter Using the Particle Swarm Optimization Technique,” IET Power Electronics, Vol. 2, No. 6, pp. 646-652, 2009.
    [175] A. Kavousi, B. Vahidi, R. Salehi, M. Bakhshizadeh, N. Farokhnia, and S. S. Fathi, “Application of the Bee Algorithm for Selective Harmonic Elimination Strategy in Multilevel Inverters,” IEEE Transactions on Power Electronics, Vol. 27, No. 4, pp. 1689-1696, 2012.
    [176] D. Soto, and T. C. Green, “A Comparison of High-Power Converter Topologies for the Implementation of FACTS Controllers,” IEEE Transactions on Industrial Electronics, Vol. 49, No. 5, pp. 1072-1080, 2002.
    [177] E. P. Wiechmann, P. Aqueveque, R. Burgos, and J. Rodriguez, “On the Efficiency of Voltage Source and Current Source Inverters for High-Power Drives,” IEEE Transactions on Industrial Electronics, Vol. 55, No. 4, pp. 1771-1782, 2008.
    [178] A. Terciyanli, M. Ermis, and I. Cadirci, “A Selective Harmonic Amplification Method for Reduction of kVA Rating of Current Source Converters in Shunt Active Power Filters,” IEEE Transactions on Power Delivery, Vol. 26, No. 1, pp. 65-78, 2011.
    [179] J. I. Guzman, P. E. Melin, J. R. Espinoza, L. A. Moran, C. R. Baier, J. A. Munoz, and G. A. Guinez, “Digital Implementation of Selective Harmonic Elimination Techniques in Modular Current Source Rectifiers,” IEEE Transactions on Industrial Informatics, Vol. 9, No. 2, pp. 1167-1177, 2013.
    [180] R. Ni, Y. W. Li, Y. Zhang, N. Zargari, and Z. Cheng, “Virtual Impedance Based Selective Harmonic Compensation (VI-SHC) PWM for Current Source Rectifiers,” IEEE Transactions on Power Electronics, Vol. 29, No. 7, pp. 3346-3356, 2014.
    [181] D. Wuest, H. Stemmler, and G. Scheuer, “A Comparison of Different Circuit Configurations for an Advanced Static VAR Compensator (ASVC),” IEEE PESC-1992, pp. 521-529, 1992.
    [182] B. Singh, and R. Saha, “A New 24-Pulse STATCOM for Voltage Regulation,” IEEE PEDES-2006, pp. 1-5, 2006.
    [183] C. K. Lee, J. S. K. Leung, S. Y. R. Hui, and H. S. H. Chung, “Circuit-level Comparison of STATCOM Technologies,” IEEE Transactions on Power Electronics, Vol. 18, No. 4, pp. 1084-1092, 2003.
    [184] S. Mori, K. Matsuno, T. Hasegawa, S. Ohnishi, M. Takeda, M. Seto, S. Murakami, and F. Ishiguro, “Development of a Large Static VAr Generator Using Self-Commutated Inverters for Improving Power System Stability,” IEEE Transactions on Power Systems, Vol. 8, No. 1, pp. 371-377, 1993.
    [185] B. Singh, R. Saha, A. Chandra, and K. Al-Haddad, “Static Synchronous Compensators (STATCOM): a Review,” IET Power Electronics, Vol. 2, No. 4, pp. 297-324, 2009.
    [186] A. M. Y. M. Ghias, J. Pou, M. Ciobotaru, and V. G. Agelidis, “Voltage-Balancing Method Using Phase-Shifted PWM for the Flying Capacitor Multilevel Converter,” IEEE Transactions on Power Electronics, Vol. 29, No. 9, pp. 4521-4531, 2014.
    [187] J. Chavarria, D. Biel, F. Guinjoan, C. Meza and J. J. Negroni, “Energy-Balance Control of PV Cascaded Multilevel Grid-Connected Inverters under Level-Shifted and Phase-Shifted PWMs,” IEEE Transactions on Industrial Electronics, Vol. 60, No. 1, pp. 98-110, 2013.
    [188] H. W. V. D Broeck, H. C. Skudelny, and G. V. Stanke, “Analysis and Realization of a Pulsewidth Modulator Based on Voltage Space Vectors,” IEEE Transactions on Industry Applications, Vol. 24, No. 1, pp. 142-150, 1988.
    [189] X. Aiguo, and X. Shaojun, “A Multipulse-Structure-Based Bidirectional PWM Converter for High-Power Applications,” IEEE Transactions on Power Electronics, Vol. 24, No. 5, pp. 1233-1242, 2008.
    [190] N. Mohan, T. M. Undeland, and W. P. Robbins, “Power Electronics:Converters, Applications, and Design,” New York:Wiley, 3rd ed., 1995.
    [191] C. M. Young, and S. F. Wu, “Selective harmonic elimination in multi-level inverter with zig-zag connection transformers,” IET Power Electronics, Vol. 7, No. 4, pp. 876-885, 2014.

    QR CODE