簡易檢索 / 詳目顯示

研究生: 謝禎蔚
Chen-Wei Hsieh
論文名稱: 基於三維空間軌跡投影分群及物件分類之視訊濃縮技術
Based on 3D Trajectory Projection Object Grouping and Classification for Video Synopsis
指導教授: 張縱輝
Tsung-Hui Chang
郭景明
Jing-Ming Guo
口試委員: 王乃堅
Nai-Jian Wang
徐繼聖
Gee-Sern Hsu
丁建均
Jian-Jiun Ding
沈中安
Chung-An Shen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 93
中文關鍵詞: 背景濾除視訊濃縮視頻摘要物件追蹤
外文關鍵詞: video synopsis, video condensation, video summarization, object tracking
相關次數: 點閱:253下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 視訊濃縮(或稱視頻摘要技術)主要的用途為去除長時間視訊中空間域以及/或者時間域的冗餘資訊並進一步藉由改變原始影片中之物件串列時間空間關聯性來達成視訊濃縮之目的。現今存在的視訊濃縮技術皆有一前提,假設所有物件串列(同一物件不同時間的集合,例如一行走的行人是由上百張行走的"照片"所組合而成)皆是獨立的並且可以從原始影片中完美的取出,可是此一前提在現實監視影像中是很難達成的,因目前尚無完美背景濾除演算法及物件追蹤演算法保證能克服強烈的光影變化或是因物件重疊所導致的去背景和追蹤失敗。另外,前人提出的濃縮視訊演算法所使用到的能量最小化演算法有著高計算複雜度的缺點,進而影響到此技術的實用性。
    有鑑於此,本論文提出高效率且無失真視訊濃縮技術分為以下四個部分:1) 提出基於三維空間軌跡投影之物件串列分群演算法,解決前人因物件破碎或物件追蹤失敗所導致的濃縮影片不流暢之問題。2) 提出物件串列之最小重疊率位移演算法,克服前人採用能量最佳化所造成的效率低落問題。3) 針對濃縮影片時間長度的問題,提出全域時域移動及時地調整濃縮時間長度,使得在瀏覽濃縮影片上更加靈活。4) 物件串列特性檢索,透過物件串列大小,方向,顏色,所經過的區域的檢索,縮短使用者在找尋特別事件所花費的時間。
    最後實驗結果也顯示本論文所提出的基於三維空間軌跡投影分群及物件分類之視訊濃縮演算法除了可以達到即時處理外,其產生的濃縮視訊可以克服物件追蹤失敗在濃縮視訊中所產生的不流暢現象。


    Nowadays, the video surveillance systems have become popular, and are deployed in every corner of our environment, such as in the school, airport, street, etc. It generates huge data consistantly. Thus, browsing and searching for a specific event from this database becomes challenging. To reduce the efforts by manually searching targets, the video synopsis technique was proposed to efficiently capture the dynamic behavior of a specific object with limited time period. The video synopsis method provides a condensed video by removing the spatial or temporal redundancies. This technique maintains and records all the activities completely in the original video. Some former methods have been proposed, yet they require long computational time. In addition, the blanking effect is accompanied. To overcome the above issues, a new efficient trajectory-based video synopsis is proposed in this thesis. It consists of four parts, including 1) trajectory-based object classification to keep the tubes continually and avoid the blanking effect on the synopsis video; 2) Minimum Overlap (MO) algorithm for the objects tubes temporal position in synopsis video, 3) Global Temporal Shifting (GTS) processes to make the tubes with the temporal-domain flexibility, and 4) Attributes search for a efficient way to enable a user locating specific events precisely and efficiently. As demonstrated in the experimental result, the proposed video synopsis effectively produces smooth synopsis videos without blanking, jumping, and ghosting issues.

    中文摘要 I Abstract IV 誌謝 V 目錄 VI 圖表索引 VIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 論文架構 2 第二章 文獻探討 3 2.1 前言 3 2.2 視訊濃縮相關技術介紹 6 第三章 視訊濃縮技術 15 3.1 系統簡介 15 3.2 視訊分析層(Video Analysis layer) 18 3.2.1 多層式碼簿模型背景濾除 18 3.2.2 物件連通與標籤化 23 3.2.3 基於物件連通架構下之物件串列多元樹前置分類 29 3.3 物件串列分析層(Object Tube Analysis layer) 34 3.3.1 基於物件軌跡之二維投影 42 3.3.2 基於物件軌跡之二維投影多元樹物件串列分類 43 3.4 視訊濃縮層(Video Synopsis layer) 48 3.4.1 濃縮演算法概論 48 3.4.2 物件串列之最小重疊率計算 59 3.4.3 物件串列之全域移動權重矩陣計算 63 3.4.4 濃縮影片重疊區域透明化處理 65 3.4.5 濃縮視訊互動功能與條件搜尋 66 第四章 實驗結果 70 4.1 測試環境及測試樣本 70 4.2 量化標準介紹 73 4.3 視訊濃縮實驗結果 74 第五章 結論與未來展望 89 參考文獻 90

    [1] K. Kim, T. H. Chalidabhongse, D. Harwood, and L. Davis, “Real-time foreground-background segmentation using codebook model,” Real-Time Imaging, vol. 11, no. 3, pp. 172-185, June. 2005.
    [2] J. M. Guo, Y. F. Liu, C. H. Hsia, M. H. Shih, and C. S. Hsu, “Hierarchical method for foreground detection using codebook model,” IEEE Transaction on Circuits and Systems for Video Technology, vol. 21, no.6, pp. 804-815, June. 2011.
    [3] J. M. Guo, C. H. Hsia, Y. F. Liu, M. H. Shih, C.H. Chang, and J. Y Wu, “Fast background subtraction based on a multilayer Codebook model for moving object detection,” IEEE Transaction on Circuits and Systems for Video Technology, vol. 23, no.10, pp. 1809-1821, Oct. 2013.
    [4] A. Rav-Acha, Y. Pritch, and S. Peleg, “Making a long video short: dynamic video synopsis,” In Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 435-441, June. 2006.
    [5] Y. Pritch, A. Rav-Acha, A. Gutman, S. Peleg, “Webcam synopsis: peeking around the world,” In Proc. IEEE International Conference on Computer Vision, pp. 1-8, Oct. 2007.
    [6] Y. Pritch, A. Rav-Acha, and S. Peleg, “Nonchronological video synopsis and indexing, IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 30, no. 11, pp. 1971-1987, Nov. 2008.
    [7] Y. Pritch, S. Ratovitch, A. Hendel, and S. Peleg, ”Clustered synopsis of surveillance video,” In Proc. IEEE International Conference on Advanced Video and Signal Based Surveillance, pp. 195-200, Sept. 2009.
    [8] Y. Nie, NC. Xiao, H. Sun, and P. Li, “Compact video synopsis via global spatiotemporal optimization,” IEEE Transactions on Visualization and Computer Graphics, vol. 19, no. 10, pp. 1664-1676, Oct. 2013.
    [9] X. Zhu, J. Liu, J. Wang, H. Lu, “Key observation selection for effective video synopsis,” In Proc. International Conference on Pattern Recognition , pp. 2528-2531, Nov. 2012.
    [10] C. R. Huang, H. C. Chen, and P. C. Chung, ”Online surveillance video synopsis,” In Proc. IEEE International Symposium on Circuits and Systems, pp. 1843-1846, May. 2012.
    [11] C.-R Huang, P.-C Chung, D.-K Yang, H.-C Chen, and G.-J Huang, “Maximum a posteriori probability estimation for online surveillance video synopsis”, IEEE Transactions on circuits and systems for video technology, vol. 24, no. 8, Aug 2014.
    [12] S. Feng, Z. Lei, D. Yi, and S. Z. Li, Online content-aware video condensation,” In Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 2082-2087, June. 2012.
    [13] L. Sun, J. Xing, H. Ai, and S. Lao, “A tracking based fast online complete video synopsis approach,” In Proc. International Conference on Pattern Recognition, pp. 1956-1959, Nov. 2012.
    [14] S. Wang, J. Yang, Y. Zhao, A. Cai, and S. Z. Li, “A surveillance video analysis and storage scheme for scalable synopsis browsing,” In Proc. IEEE International Conference on Computer Vision Workshops, pp. 1947-1954, Nov. 2011.
    [15] S. Feng, S. Liao, Z. Yuan, and S. Z. Li, “Online principal background selection for video synopsis,” In Proc. International Conference on Pattern Recognition, pp. 17-20, Aug. 2010.
    [16] A. Yildiz, A. Ozgur, and Y.S. Akgul, “Fast non-linear video synopsis,” In Proc. International Symposium on Computer and Information Sciences, pp. 1-6, Oct. 2008.
    [17] Z. Li, P. Ishwar, J. Konrad, “Video condensation by ribbon carving,” IEEE Transaction on Image Processing, vol. 18, no. 11, pp. 2572-2583, Nov. 2009.
    [18] W. Fu, J. Wang, L. Gui, H. Lu, S. Ma, “Online video synopsis of structured motion,” Neurocomputing, vol.135, pp.155-162, July. 2014.
    [19] M. Lu, Y. Wang, G. Pan, “Generating fluent tubes in video synopsis,” In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2292-2296, May. 2013.
    [20] E. J. Carmona, J. Martinez-Cantos and J. Mira, “A new video segmentation method of moving objects based on blob-level knowledge,” Pattern Recognition Letters, vol. 29, issue 3, pp. 272-285, Feb. 2008.
    [21] T. Kailath, ”The divergence and Bhattacharyya distance measures in signal selection,” IEEE Transactions on Communication Technology, vol. 15, no. 1, pp. 52-60, June. 1967.
    [22] S. Suzuki and K. Abei, Topological structural analysis of digitized binary images by border following,” In Proc. Computer Vision, Graphics, and Image Processing, vol. 30, no. 1, pp. 32-46, June. 1985.
    [23] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers, “Wallflower: principles and practice of background maintenance,” In Proc. IEEE Conference on Computer Vision, vol. 1, pp. 255–261, Sept. 1999.
    [24] V. Kolmogorov and R. Zabih, “What energy functions can be minimized via graph cut,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 2, pp. 147-159, Feb. 2004.
    [25] J. Sun, W. Zhang, and H. Shum, “Background cut,” In Proc. European Conference on Computer Vision, pp. 628-641, May. 2006.
    [26] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science, vol. 220, no. 4598, pp. 671-680, May. 1983.
    [27] D. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of Computer Vision, vol 60, no. 2, pp. 91-110, Nov. 2004.
    [28] C. Stauffer and W. E. L. Grimson, “Adaptive background mixture models for real-time tracking,” In Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2246-2252, Jun. 1999.
    [29] M. Heikkila and M. Pietikainen, ” A texture-based method for modeling the background and detecting moving objects,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 4, pp. 657-662, April. 2006.
    [30] K. Kim, D. Harwood, and L. S. Davis, “Background updating for visual surveillance,” Lecture Notes in Computer Science, vol. 3804, pp. 337-346, 2005.

    QR CODE