簡易檢索 / 詳目顯示

研究生: 林聖諺
SHENG-YEN LIN
論文名稱: 以計算模擬與PIV量測方法探討二閥引擎的缸內流場
Enhancing Engine Performance by Modifying Inlet Flow
指導教授: 黃榮芳
Rong-Fung Huang
口試委員: 陳佳
none
許清閔
Ching-Min Hsu
張家和
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 342
中文關鍵詞: 內燃機
外文關鍵詞: Engine
相關次數: 點閱:176下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究探討改變一部二閥單缸四行程125 c.c.引擎之進氣埠流道的幾何形狀對於缸內滾轉運動之流動型態與強度的影響,並以量化的體平均循環滾轉比為指標,從幾種幾何形狀中找出較佳的設計。設計四個具有不同進氣埠幾何形狀的汽缸頭 (分別命名為F8A、VJ3、M1-1、M1-5),安裝於引擎,並將原來的鋁合金汽缸改裝為透明壓克力缸體。使用質點影像速度儀 (particle image velocimetry, PIV)量測汽缸內的瞬時流場;利用商業套裝計算流體動力學 (Computational Fluid Dynamics, CFD)軟體CONVERGE分析在進氣與壓縮行程期間缸內氣流的滾轉(tumble)運動。以旋度 (vorticity)為基礎定義一個無因次的體平均循環渦度滾轉比 (‾("T" _"v,CA" ));另採用CONVERGE的滾轉比定義,以圍繞質心的軸向速度為基礎定義一個CONVERGE滾轉比 (‾("T" _"v,CA" )’)。依據這兩個滾轉比的定義計算出量化的缸內氣流滾轉強度,並配合缸內滾轉運動之流動型態以及CFD計算得出的容積效率判斷四個汽缸頭流動的優劣。實驗與計算結果顯示,進氣埠流道形狀修改後容積效率幾乎沒有變化 (約1%左右),而體平均循環滾轉比卻上升許多 (6.5 ~ 34.3%)。其中尤以M1-1的體平均循環渦度滾轉比增強最多 (27.3% @ 4000 RPM)。與引擎性能測試結果相比較,在空燃比13 ~ 18之間,M1-1的制動馬力燃料消耗量 (BSFC)比原引擎 (F8A)降低許多 (約6%)。滾轉運動的增強造成紊流強度的增加與擴散的增強,有助於空氣和燃料的混和,因此可以提升引擎性能,降低油耗與有害廢氣排放之濃度。改變空然比測試之結果顯示,修改過後的汽缸頭M1-1可以更稀油燃燒,並保以原性能輸出,同時抑制汙染物之生成。


The in-cylinder flows of a motored two-valve, single-cylinder, four-stroke engine were studied by experimental and computational methods. Moderate and intense tumble motions were generated by changing the inlet port configurations. Experimental were carried out by the particle image velocimeter (PIV). The engine cylinder, piston, and accessories were modified to meet the requirements of laser-light sheet shooting and camera viewing when the particle image velocimeter was applied. Conditional sampling technique was employed to acquire the instantaneous velocity data at predetermined crank angles. Ensemble average of large amount of the instantaneous velocity maps obtained at various crank angles presented clear pictures of the evolution processes of the tumble motions in the engine cylinder. Sectional streamlines and the velocity vectors showed the topological flow structures. The computations were carried out by the fluid dynamics code CONVERGE. The ensemble averaged conservation equations for mass, momentum, and energy in transient state conditions with the turbulence model standard k-Ɛ were solved. The grid, reproducing the geometry of the inlet port, exhaust port, combustion chamber, and real fluid system, was made by using CONVERGE STUDIO module. The CONVERGE STUDIO was designed to facilitate the moving grid, transient analysis of internal combustion engines. The boundary conditions prescribed to the computation domain were the same as the experimental ones. The inception, establishment, evolution, and destruction processes of the tumbling vortical structures during the intake and compression strokes were presented and discussed. Quantified strengths of the rotating motions in the axial planes were presented by dimensionless tumble ratios, which was defined as the mean angular velocity of the vortices in the target plane at a certain crank angle divided by average crank angle velocity. The quantitative results of the cycle-averaged tumble ratios showed that the modified inlet ports induced large tumble intensity and turbulence intensity. By comparing the quantified non-dimensional parameters of the in-cylinder flow motions with the engine performance, the correlation between the flow characteristics and the engine output was closely correlated. It was found that the engine performance was apparently increased and the lean limit air-fuel ratio tends to increase toward lean side with higher tumble intensity for lean burn engine. The CFD results quantitatively followed the measurements of experiments. However, the quantitative comparisons showed large differences.

目錄 摘要i Abstractii 誌謝iv 目錄vi 符號索引x 表圖索引xiii 第一章緒論1 1.1研究動機1 1.2文獻回顧3 1.3研究目的與方法9 第二章標的引擎規格10 2.1幾何構造10 2.2尺寸10 第三章計算方法11 3.1計算流力軟體簡介11 3.2統御方程式12 3.2.1紊流模式13 3.3邊界條件與初始條件16 3.3.1邊界條件16 3.3.2初始條件17 3.4數值模擬17 3.4.1計算網格18 3.4.2離散化方程式18 3.4.3PISO解法理論20 3.4.4收斂標準27 3.4.5計算座標定義27 第四章分析參數定義29 4.1物理參數29 4.1.1容積效率 (volumetric efficiency)29 4.1.2滾轉比 (tumble ratio)30 4.1.2.1截面平均渦度滾轉比 (TCA)30 4.1.2.2截面平均循環渦度滾轉比 ("TCA" )30 4.1.2.3體平均渦度滾轉比 (Tv,CA)31 4.1.2.4體平均循環渦度滾轉比 ("Tv,CA" )31 4.1.2.5CONVERGE定義之體平均渦度滾轉比(Tv,CA’)32 4.1.2.6樣本平均 (ensemble average)32 4.1.2.7紊流強度 (turbulence intensity)33 4.1.2.8面平均紊流強度 (face-avergaed turbulence intensity)34 4.1.2.9面平均循環紊流強度 (face-cycle-averaged turbulence intensity)34 4.2量化模式35 4.2.1算數平均 (arithmetic average over planes)35 4.2.2體積分率 (weighted by area factor)37 第五章缸內氣流滾轉運動計算結果38 5.1F8A38 5.1.1N = 1200 RPM、2000 RPM和4000 RPM38 5.1.1.1對稱面 ( y = 0 )38 5.1.1.2y = 11.8 mm39 5.1.1.3y = -11.8 mm40 5.2VJ341 5.2.1N = 1200 RPM、2000 RPM和4000 RPM41 5.2.1.1對稱面 ( y = 0 )41 5.2.1.2y = 11.8 mm42 5.2.1.3y = -11.8 mm44 5.3M1-145 5.3.1N = 1200 RPM、2000 RPM和4000 RPM45 5.3.1.1對稱面 ( y = 0 )45 5.3.1.2y = 11.8 mm46 5.3.1.3y = -11.8 mm47 5.4M1-548 5.4.1N = 1200 RPM、2000 RPM和4000 RPM48 5.4.1.1對稱面 ( y = 0 )48 5.4.1.2y = 11.8 mm49 5.4.1.3y = -11.8 mm51 5.5容積效率及缸內溫度與壓力分析52 5.5.1容積效率52 5.5.2缸內平均壓力與溫度52 5.6滾轉比分析52 5.6.1隨CA變化的截面平均渦度滾轉比 (TCA)53 5.6.2截面平均循環渦度滾轉比 ("TCA" )54 5.6.3隨CA變化的體平均渦度滾轉比 (Tv,CA)54 5.6.3.1算數平均55 5.6.3.2體積分率55 5.6.4體平均循環渦度滾轉比 ("Tv,CA" )56 5.6.4.1隨分區方法變化56 5.6.4.2隨case變化56 5.6.4.3比較算數平均與體積分率兩種量化模式57 5.7CONVERGE中定義之滾轉比57 第六章計算結果之比較與討論58 6.1容積效率58 6.2體平均渦度滾轉比58 6.3討論58 第七章缸內氣流滾轉運動實驗結果60 7.1實驗設備、儀器與方法60 7.1.1實驗構想與方法60 7.1.1.1引擎改裝60 7.1.1.2引擎潤滑油路系統改裝61 7.1.1.3取像相位與座標定義62 7.1.1.4實驗引擎動力來源63 7.1.1.5質點選用63 7.1.2實驗設備64 7.1.2.1引擎型式與規格64 7.1.2.2傳動系統64 7.1.2.3質點植入系統64 7.1.2.4光電感應器 (photoelectric sensor)65 7.1.2.5訊號截取系統 (DAQ)65 7.1.3實驗儀器66 7.1.3.1質點影像速度儀66 7.1.3.1.1PIV硬體架構67 7.1.3.1.2PIV軟體架構67 7.2對稱面循環變異變異與樣本次數分析69 7.2.1缸內流場結構與樣本平均次數之分析69 7.2.2缸內任一固定點的速度與樣本平均次數之分析70 7.3F8A71 7.3.1N = 1200 RPM71 7.3.1.1對稱面 ( y = 0 )71 7.3.1.2y = -11.8 mm73 7.4VJ375 7.4.1N = 1200 RPM75 7.4.1.1對稱面(y = 0)75 7.4.1.2y = -11.8 mm77 7.5滾轉比分析79 7.5.1N = 1200 RPM79 7.5.1.1對稱面 (y = 0)79 7.5.1.2對稱偏移面 (y = -11.8)79 第八章引擎性能測試與計算結果比較81 8.1空燃比 (air-fuel ratio)81 8.2扭矩 (torque)82 8.3制動馬力 (brake horsepower)82 8.4制動馬力燃料消耗量 (brake specific fuel consumption)82 8.5排放物 (emissions)83 8.6討論84 第九章討論85 9.1速度向量與流線圖85 9.2面平均循環渦度滾轉比85 9.3討論85 第十章結論與建議87 10.1結論87 10.2建議88 參考文獻89

參考文獻
[1]Mayer, H., “Air Pollution in Cities,” Atmospheric Environment, Vol. 33, 1999, pp. 4029-4036
[2]李進修, 王漢英, 汽機車引擎設計與分析技術, 國立清華大學出版社, 2005.
[3]Heywood, J. B., Internal Combustion Engine Fundamentals, McGraw-Hill, New York, 1988.
[4]Heywood, J. B., “Fluid Motion within the Cylinder of Internal Combustion Engines − The 1986 Freeman Scholar Lecture,” Journal of Fluids Engineering, Transactions of the ASME, Vol. 109, No. 1, 1987, pp. 3-35.
[5]Tennekes, H. and Lumley, J. L., A First Course in Turbulence, MIT Press, Cambridge and London, 1972.
[6]Wilson, N. D., Watkins, A. J., and Dopson, C., “Asymmetric Valve Strategies and Their Effect on Combustion,” Journal of Engines, Vol. 102, 1993, pp. 1081-1092. Also in SAE Transactions-Section 3, SAE 930821,
[7]Kent, J. C., Mikulec, A., Rimal, L., Adamczyk, A. A., Mueller, S. R., Stein, R. A., and Warren, C. C., “Observations on the Effects of Intake-Generated Swirl and Tumble on Combustion Duration,” Journal of Engines, Vol. 98, 1989, pp. 2042-203. Also in SAE Transactions-Section 3, SAE 892096.
[8]Endres, H., Neuβer, H.-J, and Wurms, R. “Influence of Swirl and Tumble on Economy and Emissions of Multi Valve SI Engines,” Journal of Engines, Vol. 101, 1992, pp. 942-953. Also in SAE Transactions-Section 3, SAE 920516.
[9]Omorl, S., Iwachido, K., Motomochi, M., and Hirako, O., “Effect of Intake Port Flow Pattern on the In-Cylinder Tumbling Air Flow in Multi-Valve SI Engines,” Journal of Engines, Vol. 100, 1991, pp. 729-740. Also in SAE Transactions-Section 3, SAE 910477.
[10]Ekchian, A. and Hoult, D. P., “Flow Visualization Study of the Intake Process of an Internal Combustion Engine,” Journal of Engines, Vol. 88, 1979, pp. 383-400. Also in SAE Transactions, SAE 790095.
[11]Rask, R. B., “Laser Doppler Anemometer Measurements in an Internal Combustion Engine,” Journal of Engines, Vol. 88, 1979. pp. 371-382. Also in SAE Transactions, SAE 790094.
[12]Liou, T. M. and Santavicca, D. A. “Cycle Resolved LDV Measurements in a Motored IC Engine,” Journal of Fluids Engineering, Transactions of the ASME, Vol. 107, 1985, pp. 232-240.
[13]Nadarajah, S., Balabani, S., Tindal, M. J., and Yianneskis, M., “The Effect of Swirl on the Annular Flow past an Axisymmetric Poppet Valve,” Proceedings of the Institution of Mechanical Engineers, part C, Vol. 212, No. 6, 1998, pp. 473-484.
[14]Khaligi, B., and Huebler, M. S., “A Transient Water Analog of Dual Intake Valve Engine for Intake Flow Visualization and Full-Field Velocity Measurements,” Journal of Engines, Vol. 97, 1988, pp. 6.877-6.891. Also in SAE Transactions-Section 3, SAE 880519.
[15]Coz, J. F. L., Henriot, S., and Pinchon P., “An Experimental and Computational Analysis of the Flow Field in a Four-Valve Spark Ignition Engine − Focus on Cycle-Resolved Turbulence,” Journal of Engines, Part 1, Vol. 99, 1990, pp. 294-321. Also in SAE Transactions-Section 3, SAE 900056.
[16]Arcoumanis, C., Hu, Z., Vafidis, C., and Whitelaw, J. H., “Tumbling Motion: A Mechanism for Turbulence Enhancement in Spark- Ignition Engines,” Journal of Engines, Part 1, Vol. 99, 1990, pp. 375-391. Also in SAE Transactions-Section 3, SAE 900060.
[17]Khaligi, B., “Intake-Generated Swirl and Tumble Motions in a 4-Valve Engine with Various Intake Configurations -Flow Visualization and Particle Tracking Velocimetry,” Journal of Engines, Part 1, Vol. 99, 1990, pp. 354-374. Also in SAE Transactions-Section 3, SAE 900059.
[18]Khalighi, B., “Study of the Intake Tumble Motion by Flow Visualization and Particle Tracking Velocimetry,” Experiments in Fluids, Vol. 10, No. 6, 1991, pp. 230-236.
[19]Rönnbäck, M., Le W. X., and Linna, J. R., “Study of Induction Tumble by Particle Tracking Velocimetery in a 4-Valve Engine,” Journal of Engines, Vol. 100, 1991, pp. 1824-1838. Also in SAE Transactions-Section 3, SAE 912376.
[20]Adrian, R. J., “Particle Imaging Techniques for Experimental Fluid Mechanics,” Annual Review of Fluid Mechanics, Vol. 23, 1991, pp. 261-304.
[21]Choi, W. C., and Guezennec, Y. G., “Study of the Flow Field Development During the Intake Stroke in an IC Engine Using 2-D PIV and 3-D PTV,” Journal of Engines, Vol. 108, 1999, pp. 1447-1459. Also in SAE Transactions-Section 3, SAE 1999-01-0957.
[22]Lee, J., and Farrel, P. V., “Intake Valve Flow Measurements of an IC Engine Using Particle Image Velocimetry,” Journal of Engines, Vol. 102, 1993, pp. 629-647. Also in SAE Transactions-Section 3, SAE 930480.
[23]Valentino, G., Kaufman, D., and Farrel, P. V., “Intake Valve Flow Measurements Using PIV,” Journal of Fuels and Lubricants, Vol. 102, 1993, pp. 1156-1175. Also in SAE Transactions-Section 4, SAE 932700.
[24]Gharakhani, A., and Ghoniem, A. F., “3D Vortex Simulation of Intake Flow in a Port-Cylinder with a valve Seat and a Moving Piston,” Journal of Engines, Vol. 105, 1996, pp. 1627-1639. Also in SAE Transactions-Section 3, SAE 9961195.
[25]Freek, C., Hentschel, W., and Merzkich, W., “High Speed PIV − A Diagnostic Tool for IC-Engines,” Proceedings of the Eighth International Symposium on Flow Visualization, 1998, pp. 185.1 -185.10.
[26]Richter, M., Axelsson, B., Aldén, M., Josefsson, G., Carlsson, L-O., Dahlberg, M., Nisbet, J., and Simonsen, H. “Investigation of the Fuel Distribution and the In-cylinder Flow Field in a Stratified Charge Engine Using Laser Techniques and Comparison with CFD-Modelling,” Journal of Fuels and Lubricants, Vol. 108, 1999, pp. 1652-1663. Also in SAE Transactions-Section 4, SAE 1999-01-3540.
[27]Reeves, M., Towers, D. P., Tavender, B., and Buckberry, C. H., “A High-Speed All-Digital Technique for Cycle-Resolved 2-D Flow Measurement and Flow Visualization within SI Engine Cylinders,” Optics and Lasers in Engineering, Vol. 31, October 1999, pp. 247-261
[28]Cao, Z.-M., Nishino, K., Mizuno, S., and Torii, K., “PIV Measurement of Internal Structure of Diesel Fuel Spray,” Experiments in Fluids (Suppl.), 2000, S211-S219.
[29]Zolver, M., Klahr, D., and Torres, A., “An Unstructured Parallel Solver for Engine Intake and Combustion Stroke Simulation,” Journal of Engines, Vol. 111, 2002, pp. 1919-1929. Also in SAE Transactions-Section 3, SAE 2002-01-1120.
[30]Auriemma, M., Caputo, G., Corcione, F. E., and Valentino, G., “Fluid-Dynamic Analysis of the Intake System for a HDDI Diesel Engine by STAR-CD Code and LDA Technique,” Journal of Engines, Vol. 112, 2003, pp. 21-28. Also in SAE Transactions-Section 3, SAE 2003-01-0002.
[31]Nonaka, Y., Horikawa, A., Nonaka, Y., Hirokawa, M., and Noda, T., “Gas Flow Simulation and Visualization in Cylinder of Motor-Cycle Engine,” Journal of Engines, SAE Transactions-Section 3, Vol. 113, 2004, SAE 2004-32-0004, pp. 1710-1714.
[32]Huang, R. F., Huang, C. W., Chang, S. B., Yang, H. S., and Hsu, W. Y., “Topological Flow Evolutions in Cylinder of a Motored Engine During Intake and Compression Strokes,” Journal of Fluids and Structures, Vol. 20, January 2005, pp. 105-127.
[33]林岱衛, 不同進氣道設計的四行程單缸引擎缸內流場與紊流特性的 PIV診測, 國立台灣科技大學機械工程技術研究所碩士論文, 2004。
[34]楊賀順, 平頂與凹面活塞四閥四行程引擎的缸內流場滾轉運動與紊流衍化:PIV量測技術的開發與應用, 國立台灣科技大學機械工程技術研究所碩士論文, 2004。
[35]林冠旭, 增強內燃機缸內氣流滾轉運動的方法與診測:計算模擬與PIV實驗量測, 國立台灣科技大學機械工程技術研究所碩士論文, 2006。
[36]許文誠, 四閥單缸機車引擎缸內流場的PIV量測與計算分析, 國立台灣科技大學機械工程技術研究所碩士論文, 2007。
[37]Papageorgakis, G., and Assanid, D. N., “Optimizing gaseous fuel-air mixing in direct injection engines using an RNG based k-ε model,” Journal of Engine, Vol. 107, 1998, pp. 82-107. Also in SAE Transactions-Section 3, SAE 980135.
[38]Arcoumanis, C., Godwin, S. N., and Kim, J. W., “Effect of Tumble Strength on Combustion and Exhaust Emissions in a Single-Cylinder, Four-Valve, Spark-Ignition Engine,” Journal of Engines, Vol. 107, 1998, pp. 1547-1562. Also in SAE Transactions-Section 3, SAE 981044.
[39]Iwamoto, Y., Noma, K., Nakayama, O., Yamauchi, T., and Ando, H., “Development of Gasoline Direct Injection Engine,” Journal of Engines, Vol. 106, 1997, pp. 777-793. Also in SAE Transactions-Section 3, SAE 970541.
[40]Warsi, Z. U. A., “Conservation Form of the Navier-Stokes Equations in General Nonesteady Coordinates,” AIAA Journal, Vol. 19, No. 2, 1981, pp. 240-242.
[41]Ersteeg, H. K., and Malalasekera, W., An Introduction to Computational Fluid Dynamics-The Finite Volume Method, Wiley, New York, 1995.
[42]Kurniawan, W. H, Abdullah, S., and Shamsudeen, A., “A computational fluid dynamics study of cold-flow analysis for mixture preparation in a motored four-stoke direct injection engine, ” Journal of Applied Science 7, Vol. 19, 2007, pp. 2710-2724.
[43]游耀鴻, 內燃機缸內氣流滾轉及旋轉運動最佳化技術, 國立台灣科技大學機械工程技術研究所碩士論文, 2011。
[44]Flagan, R. C., and Seinfied, J. H., Fundamentals of Air Pollution Engineering, Prentice Hall, Englewood Cliffs, NJ, 1988, pp. 295-307.
[45]Keane, R. D., and Adrian, R. J., “Theory of Cross-Correlation Analysis of PIV Images,” Applied Scientific Research, Vol. 49, No. 3, 1992, pp. 191-215.
[46]Keane, R. D., and Adrian, R. J., “Optimization of Particle Image Velocimeter Part I: Double Pluse System.” Measurements Science and Technology, Vol. 1, No. 11, 1990, pp. 1202-1215.
[47]Hart, D. P. “Super-resolution PIV by recursive local-correlation,” Journal of Visualization, Vol. 10, No. 1, 1999, pp. 1-10.
[48]林政諺,二閥四行程機車引擎瞬間流場與歧管噴油特性的計算與實驗分析,國立台灣科技大學機械工程技術研究所碩士論文,2012。

無法下載圖示 全文公開日期 2020/07/14 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE