簡易檢索 / 詳目顯示

研究生: 洪嘉駿
Chia-Chun Hung
論文名稱: 以光沉積合成鉑包覆二氧化鈦核殼型結構觸媒之研究
Study on TiO2@Pt core-shell catalyst synthesized by photodeposition
指導教授: 蘇威年
Wei-Nien Su
黃炳照
Bing Joe Hwang
口試委員: 林昇佃
Shawn D. Lin
王丞浩
Chen-Hao Wan
蘇威年
Wei-Nien Su
黃炳照
Bing-Joe Hwang
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 129
中文關鍵詞: TiO2@Pt光沉積核殼型結構氧氣還原反應一氧化碳協助觸媒-載體交互作用
外文關鍵詞: TiO2@Pt, Photodeposition, Core-shell structure, CO-assist, Oxygen reduction reaction, Strong Metal-Support Interaction(SMSI)
相關次數: 點閱:388下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要目標開發以鉑包覆金屬氧化物之新型核殼型觸媒,並應用於酸性條件下氧氣還原反應。實驗構想為利用金屬氧化物的半導體特性,運用光沉積法(Photodeposition Method)將鉑沉積於二氧化鈦上,並以合成氣氛、光強度及反應時間為變數,系統性地探討觀察所製備觸媒的形貌與負載量。更進一步,研究此新型核殼觸媒之氧氣還原反應活性與穩定性。
本合成首先分別在一般大氣及曝入飽和一氧化碳下進行光沉積,從UV-vis 光譜可得知,在合成過程中,曝入一氧化碳之溶液,會與鉑前驅物產生錯合離子。並從TEM 之影像觀察到,經曝入一氧化碳所製備的鉑樣品有明顯聚集現象;而在一般大氣下製備之樣品,可成功形成薄層鉑完整包覆二氧化鈦的核殼觸媒系統。由XAS光譜證實,經光沉積合成出來之樣品有著較飽滿的d 電子軌域,證實此觸媒系統有著強觸媒-載體交互作用(Strong Metal-Support Interaction, SMSI),唯此效應會隨著觸媒聚集而降低。
從電化學角度來看,在大氣下合成形成鉑包覆二氧化鈦核殼結構的觸媒,不管是電化學活性面積還是氧氣還原活性,皆明顯優於曝入一氧化碳之樣品。而在大氣中光強度0.1 sun 沉積3 小時的樣品(起始電位= 0.86 VRHE),其質量活性及電化學活性面積,均可比擬商業化白金Pt/C(起始電位=0.85 VRHE)的效能。更在五千圈後的穩定性測試,質量活性僅有55%的衰退,而商業化白金Pt/C 則衰退了79%,穩定性有著顯著的進步。


The main objective of this study is to develop a novel M@Pt(M= metal
oxide) core-shell catalyst for oxygen reduction reaction under acidic
conditions. The photodeposition method was adopted to deposit platinum
on titanium dioxide. Gas atmosphere, light intensity and reaction time
were used as variables to systematically investigate the morphology of
the prepared catalyst. Furthermore, the oxygen reactivity and stability of this novel core-shell catalyst were also examined in this study.
First, photodeposition was conducted both in air or an atmosphere filled with carbon monoxide. It is interesting to note that Pt-complex ions were observed in carbon monoxide atmosphere by UV-vis spectroscopy.As seen by TEM, the samples prepared under exposure to carbon monoxide have obviously aggregated Pt formation on TiO2 particles. On the other hand, TiO2@Pt core-shell catalyst could be successfully prepared in air by photodeposition, and XAS spectroscopy confirms that Pt in the samples synthesized under these conditions had less unfilled d-state, indicating the presence of Strong Metal-Support Interaction(SMSI).
For the electrochemical test, TiO2@Pt prepared in air exhibits a
higher electrochemical surface area or oxygen reduction activity, which
are significantly better than the counterpart synthesized under carbon
monoxide ones. TiO2@Pt prepared in air under light intensity 0.1 sun for 3 hours (onset potential = 0.86 VRHE) has the mass activity and
electrochemically surface area comparable to commercial Pt/C (onset
potential = 0.85 VRHE).Finally, the designed configuration with TiO2-core and Pt thin shell has made a significant progress in improving the stability of electrocatalysts for Oxygen Reduction Reaction (ORR). TiO2@Pt prepared in air under light intensity 0.1 sun for 3 hours experienced only degradation of 55 % in mass activity, whereby commercial Pt/C suffered a loss of 79% after 5000 cycles.

摘要 ...................................................................................................... I Abstract ............................................................................................... II 致謝 .................................................................................................... III 目錄 ..................................................................................................... V 圖目錄 .............................................................................................. VIII 表目錄 ............................................................................................... XII 第一章 緒論 ...................................................................................... 1 1.1 前言 ......................................................................................... 1 1.2 燃料電池之發展及趨勢 .......................................................... 2 1.3 質子交換膜燃料電池 (Proton Exchange Membrane Fuel Cell, PEMFC) ................................................................................................ 4 1.3.1 質子交換膜 .......................................................................... 6 1.3.2 PEMFC 陰極觸媒(PEMFC Cathode Catalyst) ......................... 9 1.3.3 膜電極組內反應機制 ........................................................ 13 1.4 研究動機與目的 .................................................................... 18 第二章 文獻回顧 ............................................................................ 20 2.1 純鉑觸媒的尺寸效應 ............................................................ 20 2.1.1 以一氧化碳抑制白金成長 ................................................ 21 2.2 提高鉑利用率 ........................................................................ 22 2.3 碳載體 ................................................................................... 24 2.4 金屬氧化物載體 .................................................................... 26 2.5 光沉積 ................................................................................... 28 2.5.1 鉑光沉積於二氧化鈦上 .................................................... 28 第三章 實驗設備與方法 ................................................................. 30 VI 3.1 實驗設備 ............................................................................... 30 3.2 實驗藥品 ............................................................................... 31 3.3 實驗步驟 ............................................................................... 32 3.3.1 估算鉑前驅物投料量 ........................................................ 32 3.3.2 光沉積法............................................................................ 34 3.3.3 樣品清單與命名 ................................................................ 35 3.4 電化學漿料調配 .................................................................... 36 3.5 材料鑑定與分析 .................................................................... 37 3.5.1 X 射線繞射儀(XRD) .................................................... 37 3.5.2 感應偶合電漿光譜儀(ICP-AES) ....................................... 41 3.5.3 穿透式電子顯微鏡 (TEM) ............................................... 41 3.5.4 紫外光-可見光光譜分析 (UV-vis) ................................... 43 3.5.5 X 光吸收光譜原理 ............................................................ 44 3.5.6 電化學原理 ........................................................................ 56 第四章 結果與討論 ........................................................................ 66 4.1 一氧化碳協助光沉積與一般光沉積之比較 ......................... 66 4.1.1 結構與特性分析 ................................................................ 66 4.1.2 電化學特性量測 ................................................................ 76 4.2 光強度優化............................................................................ 80 4.2.1 結構與特性量測 ................................................................ 80 4.2.2 電化學特性量測 ................................................................ 87 4.3 反應時間影響 ........................................................................ 92 4.3.1 結構與特性量測 ................................................................ 92 4.3.2 電化學特性量測 ................................................................ 95 4.4 最適化樣品與商業化觸媒之比較......................................... 98 4.4.1 電化學特性量測 ................................................................ 98 第五章 結論 ...................................................................................103

[1]. NOAA, The recent global surface warming hiatus:Facts or artifact od
data biases ? 2015.
[2]. L. Carrette, K. F., and U. Stimming, Fuel cells–fundamentals and
applications. Fuel cells 2001, 5~39.
[3]. 台灣電池燃料資訊網, 燃料電池的種類與特性比較表. 2009.
[4]. D. Garraín, Y. L. a. C. R., Polymer Electrolyte Membrane Fuel Cells
(PEMFC) in Automotive Applications: Environmental Relevance of the
Manufacturing Stage. Smart Grid and Renewable Energy 2011, 68-74.
[5]. 邱志豪, 聚苯咪唑合成及薄膜性質. 2004.
[6]. Baldauf, M.; Preidel, W., Status of the development of a direct
methanol fuel cell. Journal of Power Sources 1999, 84 (2), 161-166.
[7]. 曾育貞, 改質聚乙烯醇作為直接甲醇燃料電池之高分子聚電解質
薄膜之研究. 2005.
[8]. Hamann, C. H.; Hammnett, A.; Vielstich, W., Electrochemistry.
Wiley-VCH, Weinheim: 1998.
[9]. Wang, B., Recent development of non-platinum catalysts for oxygen
reduction reaction. Journal of Power Sources 2005, 152 (0), 1-15.
[10]. Wroblowa, H. S.; Yen Chi, P.; Razumney, G., Electroreduction of
oxygen a new mechanistic criterion. Journal of Electroanalytical
Chemistry 1976, 69 (2), 195-201.
[11]. Lai, F.-J.; Sarma, L. S.; Chou, H.-L.; Liu, D.-G.; Hsieh, C.-A.;
Lee, J.-F.; Hwang, B.-J., Architecture of Bimetallic PtxCo1−x
Electrocatalysts for Oxygen Reduction Reaction As Investigated by X-ray
Absorption Spectroscopy. The Journal of Physical Chemistry C 2009, 113
(29), 12674-12681.
[12]. Marković, N. M.; Schmidt, T. J.; Stamenković, V.; Ross, P. N.,
Oxygen Reduction Reaction on Pt and Pt Bimetallic Surfaces: A Selective
Review. Fuel Cells 2001, 1 (2), 105-116.
[13]. Hwang, B. J.; Kumar, S. M. S.; Chen, C.-H.; Monalisa; Cheng,
M.-Y.; Liu, D.-G.; Lee, J.-F., An Investigation of Structure−Catalytic
Activity Relationship for Pt−Co/C Bimetallic Nanoparticles toward the
107
Oxygen Reduction Reaction. The Journal of Physical Chemistry C 2007,
111 (42), 15267-15276.
[14]. Ferreira, P. J.; La O, G. J.; Shao-Horn, Y.; Morgan, D.; Makharia,
R.; Kocha, S.; Gasteiger, H. A., Instability of Pt/C electrocatalysts in
proton exchange membrane fuel cells: A mechanistic investigation.
Journal of the Electrochemical Society 2005, 152 (11), A2256-A2271.
[15]. William A. Goddard III, B. V. M., Yi Liu,Ted H. Yu,Yao Sha,
Theoretical Study of Solvent Effects on the Platinum-Catalyzed Oxygen
Reduction Reaction. The Journal of Physical Chemistry Letters 2010, 1,
856-861.
[16]. Antolini, E., Formation of carbon-supported PtM alloys for low
temperature fuel cells: A review. Materials Chemistry and Physics 2003,
78 (3), 563-573.
[17]. Rho, Y. W.; Srinivasan, S.; Kho, Y. T., Mass Transport
Phenomena in Proton Exchange Membrane Fuel Cells Using O 2/He, O
2/Ar, and O 2/N 2 Mixtures II. Theoretical Analysis. Journal of the
Electrochemical Society 1994, 141 (8), 2089-2096.
[18]. 李軒誠. 質子交換膜燃料電池研究-MEA 的製程與應用. 國立
中山大學, 2000.
[19]. 黃鎮江, 燃料電池 (三版). 全華科技圖書公司, 2003.
[20]. O’Hayre, R.; Barnett, D. M.; Prinz, F. B., The triple phase
boundary a mathematical model and experimental investigations for fuel
cells. Journal of the Electrochemical Society 2005, 152 (2), A439-A444.
[21]. Takaiwa, D.; Hatano, I.; Koga, K.; Tanaka, H., Phase diagram of
water in carbon nanotubes. Proceedings of the National Academy of
Sciences of the United States of America 2008, 105 (1), 39-43.
[22]. Shao, M.; Peles, A.; Shoemaker, K., Electrocatalysis on Platinum
Nanoparticles: Particle Size Effect on Oxygen Reduction Reaction
Activity. Nano Letters 2011, 11 (9), 3714-3719.
[23]. Xiong, Y.; Cai, H.; Wiley, B. J.; Wang, J.; Kim, M. J.; Xia, Y.,
Synthesis and Mechanistic Study of Palladium Nanobars and Nanorods.
Journal of the American Chemical Society 2007, 129 (12), 3665-3675.
[24]. Schmidt, T. J.; Noeske, M.; Gasteiger, H. A.; Behm, R. J.; Britz,
P.; Brijoux, W.; Bönnemann, H., Electrocatalytic Activity of PtRu Alloy
Colloids for CO and CO/H2 Electrooxidation: Stripping Voltammetry
108
and Rotating Disk Measurements. Langmuir 1997, 13 (10), 2591-2595.
[25]. Baschuk, J. J.; Li, X., Carbon monoxide poisoning of proton
exchange membrane fuel cells. International Journal of Energy Research
2001, 25 (8), 695-713.
[26]. Chang, S.-H.; Yeh, M.-H.; Pan, C.-J.; Chen, K.-J.; Ishii, H.; Liu,
D.-G.; Lee, J.-F.; Liu, C.-C.; Rick, J.; Cheng, M.-Y.; Hwang, B.-J.,
CO-assisted synthesis of finely size-controlled platinum nanoparticles.
Chemical Communications 2011, 47 (13), 3864-3866.
[27]. Zhang, H.; Watanabe, T.; Okumura, M.; Haruta, M.; Toshima, N.,
Catalytically highly active top gold atom on palladium nanocluster. Nat
Mater 2012, 11 (1), 49-52.
[28]. Wang, D.-Y.; Chou, H.-L.; Cheng, C.-C.; Wu, Y.-H.; Tsai, C.-M.;
Lin, H.-Y.; Wang, Y.-L.; Hwang, B.-J.; Chen, C.-C., FePt nanodendrites
with high-index facets as active electrocatalysts for oxygen reduction
reaction. Nano Energy 2015, 11, 631-639.
[29]. Taufany, F.; Pan, C.-J.; Rick, J.; Chou, H.-L.; Tsai, M.-C.; Hwang,
B.-J.; Liu, D.-G.; Lee, J.-F.; Tang, M.-T.; Lee, Y.-C.; Chen, C.-I.,
Kinetically Controlled Autocatalytic Chemical Process for Bulk
Production of Bimetallic Core–Shell Structured Nanoparticles. ACS Nano
2011, 5 (12), 9370-9381.
[30]. Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M.; Liu, J.;
Choi, S.-I.; Park, J.; Herron, J. A.; Xie, Z.; Mavrikakis, M.; Xia, Y.,
Platinum-based nanocages with subnanometer-thick walls and
well-defined, controllable facets. Science 2015, 349 (6246), 412-416.
[31]. Antolini, E., Carbon supports for low-temperature fuel cell
catalysts. Applied Catalysis B: Environmental 2009, 88 (1-2), 1-24.
[32]. Meier, J. C.; Galeano, C.; Katsounaros, I.; Topalov, A. A.; Kostka,
A.; Schüth, F.; Mayrhofer, K. J. J., Degradation Mechanisms of Pt/C Fuel
Cell Catalysts under Simulated Start–Stop Conditions. ACS Catalysis
2012, 2 (5), 832-843.
[33]. Liu, X.; Chen, J.; Liu, G.; Zhang, L.; Zhang, H.; Yi, B.,
Enhanced long-term durability of proton exchange membrane fuel cell
cathode by employing Pt/TiO2/C catalysts. Journal of Power Sources
2010, 195 (13), 4098-4103.
[34]. Gojković, S. L.; Babić, B. M.; Radmilović, V. R.; Krstajić, N. V.,
Nb-doped TiO2 as a support of Pt and Pt–Ru anode catalyst for PEMFCs.
Journal of Electroanalytical Chemistry 2010, 639 (1-2), 161-166.
[35]. Chattopadhyay, J.; Srivastava, R.; Srivastava, P. K., Ni-doped
109
TiO2 hollow spheres as electrocatalysts in water electrolysis for hydrogen
and oxygen production. Journal of Applied Electrochemistry 2012, 43 (3),
279-287.
[36]. Tang, J.; Meng, H. M., TiO2-modified CNx nanowires as a Pt
electrocatalyst support with high activity and durability for the oxygen
reduction reaction. Physical chemistry chemical physics : PCCP 2016, 18
(3), 1500-6.
[37]. Huang, S.-Y.; Ganesan, P.; Popov, B. N., Titania supported
platinum catalyst with high electrocatalytic activity and stability for
polymer electrolyte membrane fuel cell. Applied Catalysis B:
Environmental 2011, 102 (1-2), 71-77.
[38]. Huang, S.-Y.; Ganesan, P.; Popov, B. N., Titania supported
platinum catalyst with high electrocatalytic activity and stability for
polymer electrolyte membrane fuel cell. Applied Catalysis B:
Environmental 2011, 102 (1), 71-77.
[39]. Ho, V. T.; Pan, C. J.; Rick, J.; Su, W. N.; Hwang, B. J.,
Nanostructured Ti(0.7)Mo(0.3)O2 support enhances electron transfer to
Pt: high-performance catalyst for oxygen reduction reaction. J Am Chem
Soc 2011, 133 (30), 11716-24.
[40]. Khnayzer, R. S.; Thompson, L. B.; Zamkov, M.; Ardo, S.; Meyer,
G. J.; Murphy, C. J.; Castellano, F. N., Photocatalytic Hydrogen
Production at Titania-Supported Pt Nanoclusters That Are Derived from
Surface-Anchored Molecular Precursors. The Journal of Physical
Chemistry C 2012, 116 (1), 1429-1438.
[41]. Ma, J.; Valenzuela, E.; Gago, A. S.; Rousseau, J.; Habrioux, A.;
Alonso-Vante, N., Photohole Trapping Induced Platinum Cluster
Nucleation on the Surface of TiO2 Nanoparticles. The Journal of
Physical Chemistry C 2014, 118 (2), 1111-1117.
[42]. Karam, F. F.; Hussein, F. H.; Baqir, S. J.; Halbus, A. F.; Dillert,
R.; Bahnemann, D., Photocatalytic Degradation of Anthracene in Closed
System Reactor. International Journal of Photoenergy 2014, 2014, 1-6.
[43]. Che-Hsin Yang, C.-C. Y., Journal of CHEN-MIN college 2002.
[44]. Ahmed, L. M.; Ivanova, I.; Hussein, F. H.; Bahnemann, D. W.,
Role of Platinum Deposited on TiO2in Photocatalytic Methanol
Oxidation and Dehydrogenation Reactions. International Journal of
Photoenergy 2014, 2014, 1-9.
[45]. S., C.-L. R. C.-C., Effect of the phase composition and crystallite
size of sol-gel TiO2 nanoparticles on the acetaldehyde
110
photodecomposition. Superficies y Vacío 2012, 82-87.
[46]. Ngo, T. T.; Yu, T. L.; Lin, H.-L., Influence of the composition of
isopropyl alcohol/water mixture solvents in catalyst ink solutions on
proton exchange membrane fuel cell performance. Journal of Power
Sources 2013, 225, 293-303.
[47]. Tran, T. D.; Langer, S. H., Electrochemical measurement of
platinum surface areas on particulate conductive supports. Analytical
Chemistry 1993, 65 (13), 1805-1807.
[48]. Markovic, N.; Grgur, B.; Lucas, C.; Ross, P., Electrooxidation of
CO and H2/CO mixtures on Pt (111) in acid solutions. The Journal of
Physical Chemistry B 1999, 103 (3), 487-495.
[49]. Rabilloud, F.; Harb, M.; Ndome, H.; Archirel, P., UV−Visible
Absorption Spectra of Small Platinum Carbonyl Complexes and Particles:
A Density Functional Theory Study. The Journal of Physical Chemistry A
2010, 114 (23), 6451-6462.
[50]. Mukerjee, S.; McBreen, J., An In Situ X‐Ray Absorption
Spectroscopy Investigation of the Effect of Sn Additions to Carbon‐
Supported Pt Electrocatalysts: Part I. Journal of The Electrochemical
Society 1999, 146 (2), 600-606.

QR CODE