簡易檢索 / 詳目顯示

研究生: 劉政薪
Zheng-Xin Liu
論文名稱: 波谷切換控制之寬範圍串聯諧振轉換器研製
Study of Wide Range Series Resonant Converter with Valley Switching Control
指導教授: 林景源
Jing-Yuan Lin
口試委員: 林景源
Jing-Yuan Lin
邱煌仁
Huang-Jen Chiu
張佑丞
You Cheng Zhang
王建民
Jian-Min Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 99
中文關鍵詞: 寬範圍LLC串聯諧振轉換器波谷切換控制突衝模式
外文關鍵詞: Wide range, Series resonant converter, Valley switching control, Burst mode
相關次數: 點閱:340下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

一般LLC串聯式諧振轉換器,透過變頻控制方式調節輸出電壓,然而操作頻率越高會受到二次側開關寄生電容的影響,導致增益無法調降,逕而限制增益之操作範圍,而電路只能提高最大增益點實現寬範圍應用,然而這將使操作頻率遠離諧振頻率,並且使操作頻率範圍增加,逕而導致效率降低。
本論文提出透過變頻模式控制並加入波谷切換模式控制和輕載策略突衝模式控制,其中所提之波谷切換控制操作於較低之增益區間,並於輕載以下透過突衝模式控制調節輸出電壓。本論文先推導半橋LLC串聯諧振轉換器之轉移函式,並敘述傳統串聯諧振轉換器的動作區間,接著對波谷切換控制與突衝模式控制動作時序進行分析,最後根據不同控制策略進行比較,之後根據不同控制分別使用模擬軟體分析品質因數Q、電感比值K對增益所造成的影響,並根據分析結果規劃一設計流程。
最後根據USBPD3.1之輸出規範,研製一台輸出電壓5 V~48 V、最大輸出功率240 W並搭配本論文控制策略之半橋LLC串聯諧振轉換器,並與一台相同輸出規格並使用一般變頻控制之半橋LLC串聯諧振轉換器做比較,根據實測結果證明,本論文所提之控制策略可操作於較低之增益區間,因此可降低操作之最大增益值,逕而使操作頻率接近諧振頻率,另外也有較寬之增益操作範圍,因此更適合於寬範圍之應用場合。


General LLC series resonant converter, through the fequency modulation control to adjust the output voltage, but the higher operating frequency will be affected by the secondary side switch parasitic capacitance, resulting in the gain can not to adjusted down, the diameter and limit the operating range of the gain, and the circuit just only increase the maximum gain point to achieve a wide range of applications, but this will make the operating frequency far to the resonant frequency, and the operating frequency range increases, and reduced efficiency.
In this thesis, it’s proposed that the Valley switching mode control and light load strategy burst mode control are added to frequency modulation control, in which the proposed valley switching control operates in the lower gain range, and the output voltage is adjusted by the burst mode control below light load. This thesis first to derives the transfer function of the half-bridge series resonant converter, and describes the operation interval of the traditional series resonant converter, after that analyzes the operation timing of the valley switching control and the burst mode control. Finally compare according to different control strategies, and uses simulation software to analyze the effect of quality factor Q and inductor ratio K on gain to different controls, and plans a design process according to the analysis results.
Finally, according to the specification of USBPD3.1, develop a half-bridge LLC series resonant converter with an output voltage of 5 V~48 V and a maximum output power of 240W, which is matched with the control strategy of this thesis. Compared with the half-bridge LLC series resonant converter, according to the actual measurement results, the control strategy proposed in this thesis can operate in a lower gain range, so the maximum gain value of the operation can be reduced, so that the operating frequency can be close to the resonant frequency, In addition, it has a wider gain operating range, so it is more suitable for a wide range of applications.

目錄 摘 要 iii Abstract iv 誌 謝 vi 目 錄 vii 圖索引 x 表索引 xiv 第1章 緒論 1 1.1研究動機和目的 1 1.2論文內容大綱 3 第2章 半橋LLC諧振轉換器電路分析 4 2.1理想RLC串聯諧振電路 4 2.2半橋LLC增益曲線轉移函式推導 6 2.3半橋LLC串聯諧振轉換器動作區間分析 10 2.4波谷切換控制分析 17 2.4.1波谷切換控制時序分析 17 2.4.2諧振電容電壓的影響 26 2.5輕載策略突衝模式分析 28 第3章 LLC控制策略 37 3.1控制方式 37 3.1.1變頻模式控制 37 3.1.2輕載策略突衝模式控制 38 3.1.3波谷切換模式控制 39 3.2控制比較 39 3.3數位控制方式 40 3.3.1數位控制方式與週邊電路 41 3.3.2變頻模式控制數位原理 42 3.3.3波谷切換控制數位原理 43 3.3.4突衝模式控制數位原理 46 第4章 電路設計 48 4.1電路規格 48 4.2LLC諧振槽設計 49 4.2.1K值與Q值影響 49 4.2.2諧振參數 53 4.3功率級開關選用 57 4.4變壓器設計 58 4.4.1變壓器鐵芯選擇 58 4.4.2變壓器圈數設計 59 第5章 實測結果 60 5.1實測規格 60 5.2實測波形 62 5.2.1變頻控制模式 62 5.2.2波谷切換控制模式 67 5.2.3突衝控制模式 69 5.3實測數據 71 5.4傳統LLC比較 76 第6章 結論與未來展望 81 6.1結論 81 6.2未來展望 81 參考文獻 83

參考文獻
[1] https://www.digitimes.com.tw/iot/article.asp?cat=130&id=00003
95752_3SP8WHN54KQHD63EAQXYJ
[2] https://www.graniteriverlabs.com/zh-tw/technical-blog/usb-power-delivery-specification-3-1
[3] USB-IF, Universal Serial Bus Power Delivery Specification,2021
[4] S. Dey, M. Ray, H. Soni, R. Ghosh, M. Shah, “Comparison between Quasi-Resonant and Active Clamp Flyback topologies for GaN-based 65W Wall Charger Application” in Proc. (APEC), Phoenix, USA, 14 – 17 June. 2021.
[5] 蔡富斌,「具同步整流之數位控制半橋串聯諧振轉換器之研製」,國立台灣科技大學電子工程系碩士論文,民國101年7月。
[6] B. Lee, M. Kim, C. Kim, K. Park and G. Moon, “Analysis of LLC Resonant Converter considering effects of parasitic components,” in Proc. INTELEC 2009 - 31st International Telecommunications Energy Conference, Incheon, 2009, pp. 1-6.
[7] J. Koblanski, M. Luck, L. Macchiarulo, B. Rotter, D. Uehara, C. Chock, “Genetic Algorithm based Tuning for Enhancing Timing Performance of a Switch Capacitor Array Waveform Digitizer Circuit” in Proc (NSS/MIC), Boston, USA, 31 Oct. – 7 Nov. 2020.
[8] C. Yang, T. Liang, K. Chen, J. Li and J. Lee, “LLC resonant converter controller with novel light load control,” in Proc. 2014 International Power Electronics and Application Conference and Exposition, 2014, pp. 131-135.
[9] B. Wang, X. Xin, S. Wu, H. Wu and J. Ying, “Analysis and Implementation of LLC Burst Mode for Light Load Efficiency Improvement,” 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, 2009, pp. 58-64.
[10] 洪振傑,「高效能500W個人電腦電源供應器之研製」,國立台灣科技大學電子工程系碩士論文,2009
[11] K.-H. Liu and F. C. Y. Lee, “Zero-voltage switching technique in DC/DC converters,” in Proc. in IEEE Transactions on Power Electronics, July 1990, pp. 293-304
[12] J. L. Lu,R. Hou and D. Chen, Opportunities and design considerations of GaN HEMTs in ZVS applications, 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, 2018, pp. 880-885.
[13] J. Xiang, X. Ren, Y. Wang and Y. Zhang, Investigation of cascode stucture GaN devices in ZCS region of LLC resonant converter," 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, 2017, pp. 1374-1378.
[14] R. Watson, F. C. Lee, and G. C. Hua, “Utilization of an active-clamp circuit to achieve soft switching in flyback converters,” IEEE Transactions on Power Electronics, vol. 11, no. 1, pp. 162-169, Jan. 1996.
[15] 吳義利,「切換式電源轉換器」,初版,高雄:文笙書局,2012年
[16] S. De Simone, C. Adragna, C. Spini and G. Gattavari, “Design-oriented steady-state analysis of LLC resonant converters based on FHA,” in Proc. International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2006. SPEEDAM 2006., Taormina, 2006, pp. 200-207.
[17] H. Huang, “FHA-based voltage gain function with harmonic compensation for LLC resonant converter,” in Proc. 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Palm Springs, CA, 2010, pp. 1770-1777
[18] TDK, Mn-Zn Ferrite Material Characteristics datasheet, 2022.

QR CODE