簡易檢索 / 詳目顯示

研究生: 施柏宇
Bo-Yu SHIH
論文名稱: 不同治療策略於鎖骨骨折問題之生物力學評估
Biomechanical Investigation of Different Surgical Techniques for the Treatment of Clavicle Fracture
指導教授: 徐慶琪
Ching-Chi Hsu
口試委員: 趙振綱
Ching-Kong Chao
釋高上
Kao-Shang Shih
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 68
中文關鍵詞: 鎖骨骨折有限元素分析植入物強度骨折固定穩定度
外文關鍵詞: Finite element analysis, Clavicle fracture, Fracture fixation, Implant strength
相關次數: 點閱:449下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

肩部為人體最複雜的關節之一,肩部發生疼痛或受傷,都將嚴重影響人體上肢動作。肩部骨折為相當常見的肩部損傷,大都是因為高度碰撞運動傷害或車禍、摔倒造成,而鎖骨骨折占了肩部骨折總數的35%,且鎖骨擔任人體上肢與主幹連接的重要角色,因此鎖骨骨折應立即被治療。鎖骨中段三分之一骨折為最常見的鎖骨骨折,過去臨床上經常使用外部固定及植入物治療的方式進行臨床治療,但外部固定較容易產生不癒合或畸形癒合等相關併發症,因此臨床上建議使用植入物方式進行治療。植入物部份常使用骨板方式治療,過去已有少數文獻建立三維鎖骨模型並探討不同植入物位置相關問題,但皆使用單一鎖骨模型進行探討,且並未將所有植入物進行完整公平比較,因此本研究目的為建立一個完整人體上半部肩部骨骼肌肉模型,比較不同植入物治療方式的生物力學性能。
本研究使用SolidWorks建立一完整人體上半部肩部骨骼模型並使用ANSYS Workbench 14.5 加入肌肉韌帶進行有限元素分析,於肱骨施加200N向下力量模擬手提重物的狀況,再分別評估四種不同鎖骨骨折固定器,即:上方板固定、前方板固定、螺旋板固定、骨髓内釘固定。最後再以骨折固定穩定度、鎖骨應力、植入物強度結果,探討不同鎖骨骨折固定系統的優缺點。
本研究結果得知,螺旋板固定方式與其他骨折固定方式相比具有較佳的骨折固定穩定度,比對完整人體上半部肩部骨骼肌肉模型與單一鎖骨模型後發現加入肌肉韌帶後骨板類位移結果差異較不明顯,且骨板類治療方式與骨髓内釘方式相比有較好的骨折固定穩定度。上方板模型有較高的植入物應力產生,因此上方板較容易發生破壞、二次骨折等現象,本研究考慮到較完整人體模型,並可以真實模擬受力分佈狀況,可有效評估正常狀態及不同治療狀態的生力學性能。


Shoulder is one of the most complex joints in the body. It will severely affect human upper limb movements when shoulder injured. Shoulder fracture is quite common injury, and the height of the collision sports, car accident, and simple domestic falls were the possible reasons. Clavicle fractures accounted for 35% of the total number of fractures of the shoulder, and it is an important bone that connects the human upper limb and trunk. Therefore, clavicle fracture should be treated immediately. The middle third of the clavicle fracture is the most common collarbone fracture. In the past, external and internal fixations had been applied to treat the fractures. However, nonunion or malunion complications still occur after fracture treatments. In our knowledge, there are a few studies to analyze the biomechanical performances of clavicle fixation devices by using three-dimensional numerical model of human skeletal system. Most of the past studies used a single clavicle model to evaluate the biomechanics of the clavicle with or without fixation devices. Thus, the purposes of this study were to develop a complete human shoulder musculoskeletal model using finite element methods and to evaluate the biomechanical performances of different treatment methods.
The present study developed a complete human upper body model with muscles and ligaments using SolidWorks and ANSYS Workbench 14.5. Four types of fixation techniques were analyzed and discussed including the superior plate fixation, the anterior plate fixation, the spiral plate fixation, the intramedullary fixation. All the treated models were compared to the intact model. In postprocessing, the fixation stability, the bone stress, and the implant stress were calculated to investigate the strength and limitation of each fixation technique.
The results of this study showed that the spiral plate fixation has better structural stability compared with other fracture fixations. The plate fixation techniques have better fixation stability than the intramedullary nail. The superior plate fixation had higher implant stress compared with other fixations, and it would lead to a high risk of implant failure. The results of this study could fairly compare the biomechanics of different clavicle devices on the same basis, and provide surgical suggestions for clinicians.

摘要i ABSTRACTii 目錄iii 圖目錄v 表目錄vii 第1章 緒論1 1.1 概述1 1.2肩部介紹2 1.2.1 鎖骨介紹3 1.2.2肩胛骨6 1.2.3近端肱骨6 1.2.4胸鎖關節及韌帶介紹7 1.2.5肩峰關節及韌帶介紹8 1.2.6肩關節及韌帶介紹9 1.2.7肩胛胸類關節介紹10 1.2.8肌肉介紹11 1.3鎖骨骨折原因16 1.4鎖骨骨折分類16 1.5常見治療方式18 1.6 文獻回顧19 第2章 材料和方法24 2.1 完整模型建立24 2.1.1 植入物模型建立25 2.1.2 簡單模型建立31 2.1.3 韌帶與肌肉系統建立32 2.2有限元素模擬分析35 2.2.1 材料參數35 2.2.2 網格元素38 2.2.3 負載與邊界條件39 2.2.4 數值模擬結果評估42 第3章 結果43 3.1收斂性分析結果44 3.2單一鎖骨模型位移結果47 3.3單一鎖骨模型應力結果50 3.4完整肩部模型位移結果54 3.5完整肩部模型應力結果56 第4章 討論60 4.1單一鎖骨模型結果60 4.2完整模型結果62 4.3單一模型與完整模型比較63 4.4研究限制64 第5章 結論與未來展望65 5.1 結論65 5.2 未來展望65 參考文獻66

[1] H. F. Moseley, Shoulder lesions: Churchill Livingstone, 1969.
[2] A. H. Trynin, “The bohler clavicular splint in the treatment of clavicular injuries,” The Journal of Bone and Joint Surgery Am, vol. 19, no. 2, pp. 417-424, 1937.
[3] I. Jit, and M. Kulkarni, “Times of appearance and fusion of epiphysis at the medial end of the clavicle,” The Indian journal of medical research, vol. 64, no. 5, pp. 773-782, 1976.
[4] H. Moseley, “The clavicle: Its anatomy and function,” Clinical orthopaedics and related research, vol. 58, pp. 17-28, 1968.
[5] M. Harrington, T. Keller, J. Seiler, D. Weikert, E. Moeljanto, and H. Schwartz, “Geometric properties and the predicted mechanical behavior of adult human clavicles,” Journal of biomechanics, vol. 26, no. 4, pp. 417-426, 1993.
[6] R. L. Drake, A. W. Vogl, and A. W. Mitchell, Gray's anatomy for students flash cards third edition: Churchill Livingstone Elsevier, 2015.
[7] P. W. McClure, L. A. Michener, B. J. Sennett, and A. R. Karduna, “Direct 3-dimensional measurement of scapular kinematics during dynamic movements in vivo,” Journal of Shoulder and Elbow Surgery, vol. 10, no. 3, pp. 269-277, 2001.
[8] J. Saunders, and L. Abbott, “Observations on the function of the shoulder joint,” The Journal of Bone and Joint Surgery, vol. 26, no. 1, pp. 1-30, 1944.
[9] P. Levangie, and C. Norkin, Joint structure and function. A comprehensive analysis: FA Davis, 2005.
[10] A. Nordqvist, and C. Petersson, “The incidence of fractures of the clavicle,” Clinical orthopaedics and related research, vol. 300, pp. 127-132, 1994.
[11] F. Postacchini, S. Gumina, P. De Santis, and F. Albo, “Epidemiology of clavicle fractures,” Journal of Shoulder and Elbow Surgery, vol. 11, no. 5, pp. 452-456, 2002.
[12] C. M. Robinson, “Fractures of the clavicle in the adult,” Bone & Joint Journal, vol. 80, no. 3, pp. 476-484, 1998.
[13] D. Stanley, E. Trowbridge, and S. Norris, “The mechanism of clavicular fracture.A clinical and biomechanical analysis,” The Journal of Bone & Joint Surgery, vol. 70, no. 3, pp. 461-464, 1988.
[14] L. K. Khan, T. J. Bradnock, C. Scott, and C. M. Robinson, “Fractures of the clavicle,” The Journal of Bone and Joint Surgery Am, vol. 91, no. 2, pp. 447-460, 2009.
[15] A. Taylor, “Non-union of fractures of the clavicle: a review of thirty-one cases,” The bone $ joint Journal, vol. 51-B, no. 3, pp. 568-569, 1969.
[16] F. L. Allman, “Fractures and ligamentous injuries of the clavicle and its articulation,” The Journal of Bone and Joint Surgery Am, vol. 49, no. 4, pp. 774-784, 1967.
[17] I. Charles S Neer, “Fractures of the distal third of the clavicle,” Clinical orthopaedics and related research, vol. 58, pp. 43-50, 1968.
[18] D. K. Eidman, S. J. Siff, and H. S. Tullos, “Acromioclavicular lesions in children,” The American journal of sports medicine, vol. 9, no. 3, pp. 150-154, 1981.
[19] S. Falstie-Jensen, and P. Mikkelsen, “Pseudodislocation of the acromioclavicular joint,” The Journal of bone and joint surgery, vol. 64, no. 3, pp. 368-369, 1982.
[20] J. C. Parkes, and J. T. Deland, “A three-part distal clavicle fracture,” The Journal of trauma, vol. 23, no. 5, pp. 437-438, 1983.
[21] C. S. Neer, “Nonunion of the clavicle,” Journal of the American Medical Association, vol. 172, no. 10, pp. 1006-1011, 1960.
[22] I. Charles S Neer, “Fracture of the distal clavicle with detachment of the coracoclavicular ligaments in adults,” Journal of Trauma and Acute Care Surgery, vol. 3, no. 2, pp. 99-110, 1963.
[23] M. Jäger, and S. Breitner, “Therapy related classification of lateral clavicular fracture,” Unfallheilkunde, vol. 87, no. 11, pp. 467-473, 1984.
[24] C. A. Rockwood Jr, F. A. Matsen III, M. A. Wirth, and S. B. Lippitt, The shoulder: Elsevier Health Sciences, 2009.
[25] C. R. Rowe, “An atlas of anatomy and treatment of midclavicular fractures,” Clinical orthopaedics and related research, vol. 58, pp. 29-42, 1968.
[26] R. Heppenstall, “Fractures and dislocations of the distal clavicle,” The Orthopedic clinics of North America, vol. 6, no. 2, pp. 477-486, 1975.
[27] M. Pendergast, and R. Rusovici, “A finite element parametric study of clavicle fixation plates,” International journal for numerical methods in biomedical engineering, vol. 31, no. 6, pp. 2710, 2015.
[28] R. Sakai, T. Matsuura, K. Tanaka, K. Uchida, M. Nakao, and K. Mabuchi, “Comparison of internal fixations for distal clavicular fractures based on loading tests and finite element analyses,” The Scientific World Journal, vol. 2014, pp. 817321, 2014.
[29] C. Marie, “Strength analysis of clavicle fracture fixation devices and fixation techniques using finite element analysis with musculoskeletal force input,” Medical & biological engineering & computing, vol. 53, no. 8, pp. 759-69, Aug, 2015.
[30] P. M. Favre, P. M. P. Kloen, D. L. M. Helfet, and C. M. L. M. Werner, “Superior versus anteroinferior plating of the clavicle: A Finite Element Study.,” Journal of Orthopaedic Trauma November, vol. 25, no. 11, pp. 661-665, 2011.
[31] L. Zeng, H. Wei, Y. Liu, W. Zhang, Y. Pan, W. Zhang, C. Zhang, B. Zeng, and Y. Chen, “Titanium Elastic Nail (TEN) versus Reconstruction Plate Repair of Midshaft Clavicular Fractures: A Finite Element Study,” PLOS ONE, vol. 10, no. 5, pp. e0126131, 2015.
[32] H. Kaur, and I. Jit, “Age estimation from cortical index of the human clavicle in northwest Indians,” American Journal of Physical Anthropology, vol. 83, no. 3, pp. 297-305, 1990.
[33] R. Drake, A. W. Vogl, and A. W. Mitchell, Gray's anatomy for students: Elsevier Health Sciences, 2014.
[34] J. ÖSTH, “Active muscle responses in a finite element human body model,” Thesis for licentiate of engineering, vol. 2010-12, 2010.
[35] K.-t. Chen, “Biomechanical comparison between anterior cervical discectomy and fusion and cervical atificial disc replacement using nonlinear finite element analyses,” 2014.
[36] B. Sarrafpour, C. Rungsiyakull, M. Swain, Q. Li, and H. Zoellner, “Finite element analysis suggests functional bone strain accounts for continuous post-eruptive emergence of teeth,” Archives of oral biology, vol. 57, no. 8, pp. 1070-1078, 2012.
[37] R. W. Bassett, A. O. Browne, B. F. Morrey, and K. N. An, “Glenohumeral muscle force and moment mechanics in a position of shoulder instability,” Journal of Biomechanics, vol. 23, no. 5, pp. 405-415, 1990.
[38] A. Faizan, V. K. Goel, A. Biyani, S. R. Garfin, and C. M. Bono, “Adjacent level effects of bi level disc replacement, bi level fusion and disc replacement plus fusion in cervical spine- a finite element based study,” Clinical Biomechanics, vol. 27, no. 3, pp. 226-233, 2012.
[39] S. K. Ha, “Finite element modeling of multi-level cervical spinal segments (C3–C6) and biomechanical analysis of an elastomer-type prosthetic disc,” Medical Engineering & Physics, vol. 28, no. 6, pp. 534-541, 2006.

QR CODE