簡易檢索 / 詳目顯示

研究生: 林品華
Pin-Hua - Lin
論文名稱: 丙烯酸酯系熱熔感壓膠的合成並應用於無縫貼合尼龍織物
Synthesis of Acrylate Hot Melt Pressure Sensitive Adhesive for Seamless Bonding of Nylon Fabric
指導教授: 郭中豐
Chung-Feng Kuo
口試委員: 楊勝俊
none
董泯言
none
黃昌群
Chang-Chiun Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 178
中文關鍵詞: 熱熔感壓膠紫外光UV固化自由基聚合反應丙烯酸酯田口方法本質轉換選擇消去法
外文關鍵詞: hot melt pressure sensitive adhesive (HMPSA), ultraviolet (UV), free radical polymerization, acrylate, taguchi, elimination et choice translating reality (ELECT
相關次數: 點閱:320下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用紫外光(Ultraviolet, UV)固化技術,全程無使用有機溶劑製備丙烯酸酯熱熔感壓膠(Hot melt pressure sensitive adhesive, HMPSA),應用於尼龍纖維之無縫貼合技術,解決目前熱熔感壓膠因本體聚合放熱反應的熱能無法迅速釋放,而產生凝膠現象及溶液聚合反應時間冗長與有機溶劑汙染的問題,達到快速生產之目的。
    本研究分為紫外光合成丙烯酸酯寡聚物、紫外光固化熱熔感壓膠製備以及熱熔感壓膠製程最佳化參數設計與實務驗證三個部分進行討論,達到無使用溶劑、低溫貼合及快速生產之目的。
    第一部分為紫外光丙烯酸酯寡聚物的合成,原料組成為軟單體丙烯酸丁酯(Butyl acrylate, BA)賦予熱熔感壓膠初黏性能,功能性單體丙烯酸(Acrylic acid, AA)、丙烯酸-2-羧乙酯(Beta-carboxyethyl acrylate, BCEA)及丙烯酸羥乙酯(2-Hydroxyethyl acrylate, HEA)提供熱熔感壓膠內聚強度,光引發劑2,4,6-三甲基苯甲醯基-二苯基氧化膦(Diphenyl 2,4,6-trimethylbenzoyl phosphine oxide, TPO)可在紫外光下進行自由基聚合反應增加交聯度。
    使用傅立葉轉換紅外線光譜儀(Fourier transform infrared spectroscopy, FTIR)分析官能基結構、凝膠滲透層析儀(Gel permeation chromatography, GPC)分析分子量與分布指數、示差掃描熱卡量計(Differential scanning calorimetry, DSC)分析玻璃轉化溫度。結果顯示,添加BA 90 wt%、AA 10 wt%、TPO 8 phr時達到最大凝膠含量為95.89%,表示交聯效果良好,以利後續熱熔感壓膠的製備。
    第二部分為紫外光固化製備熱熔感壓膠。將第一部分之丙烯酸酯寡聚物作為基礎樹脂,添加光引發劑TPO與活性稀釋劑甲基丙烯酸缩水甘油酯(Glycidyl methacrylate, GMA)混合後塗佈於離型膜,經由紫外光固化形成熱熔感壓膠。TPO在照射紫外光後會進行自由基聚合反應可增加含膠量(Gel content)提升交聯程度,GMA可增加玻璃轉移溫度提升內聚力。將熱熔感壓膠置於兩片尼龍纖維布間進行熱壓(1 kg/cm2, 100 ℃)貼合測試。製備出最佳實驗組合為BA 90 wt%、AA 10 wt%、GMA 30 wt%及TPO 8 phr,經由紫外光固化製備的熱熔感壓膠之ΔE(總色差)=1.86、ΔL(明暗差異)=-17.52、Δa(紅綠差異)=-1.25、Δb(黃藍差異)=1.40、溢膠1.0 mm、耐水洗50次及-30 ℃低溫測試後之剝離強度與剪切強度達1.0 kg/cm以及13 kg/cm2以上。
    第三部分為熱熔感壓膠製程最佳化參數設計與實務驗證,利用田口方法(Taguchi method)與本質轉換選擇消去法(Elimination et choice translating reality, ELECTRE)進行實驗規劃,將繁雜的實驗次數與成本縮減最少,尋找產品最佳化製程參數組合,進行熱壓貼合測試,測得耐水洗50次及-30 ℃低溫測試後之剝離強度與剪切強度達1.0 kg/cm以及13 kg/cm2以上。驗證可有效提升黏著性能,達到紡織廠尼龍織物無縫貼合使用上之需求規範。


    This study uses ultraviolet (UV) to prepare hot melt pressure sensitive adhesive (HMPSA) without organic solvent, which is applied to seamless bonding technique for nylon fiber to solve the problems in HMPSA, The heat energy of the bulk polymerization exothermal reaction cannot be released rapidly, so that the macrochain generates gel; The solution polymerization time is too long and the organic solvent is difficult to be recovered; and to implement rapid production.
    This study is divided into three parts for discussion, synthesizing acrylate oligomer by UV curing, preparing HMPSA by UV curing, and hot melt pressure sensitive adhesive process optimization parameter design and practical validation, aiming to implement not using solvent, low temperature bonding and rapid production.
    Part 1 is the synthesis of acrylate oligomer by UV, the raw materials are: The soft monomer butyl acrylate (BA) endues the hot melt pressure sensitive adhesive with tack property, the functional monomer acrylic acid (AA)、beta-carboxyethyl acrylate (BCEA) and 2-hydroxyethyl acrylate (HEA) provides the hot melt pressure sensitive adhesive with cohesive strength, the photoinitiator Diphenyl 2,4,6-trimethylbenzoyl phosphine oxide (TPO) performs free radical polymerization in UV to enhance the cross-linking level.
    The Functional group structure, molecular weight and its distribution index, and glass transition temperature (Tg) of oligomers are analyzed by using fourier transform infrared spectroscopy、gel permeation chromatography and differential scanning calorimetry. The results show that the maximum gel content is 95.89% when the addition of BA 90 wt%, AA 10 wt%, and TPO 8 phr, meaning the crosslinking effect is good, favorable for subsequent preparation of HMPSA.
    Part 2 is preparation of HMPSA by UV curing. The acrylate oligomer of the first part is used as basic resin, the mixture of photoinitiator (TPO) and reactive diluent (glycidyl methacrylate, GMA) is coated on the release film, the HMPSA is formed by UV curing. The TPO performs free radical polymerization in UV, increasing the gel content to upgrade the degree of crosslinking, the GMA can increase the Tg to enhance the cohesion. The HMPSA is placed between two pieces of nylon fiber fabric for hot pressing (1 kg/cm2, 100 ℃) bonding test. The optimum experimental combination is BA 90 wt%, AA 10 wt%, TPO 8 phr and GMA 30 wt%, the ΔE (total chromatic aberration) of HMPSA prepared by UV curing is 1.86, the ΔL (bright-dark difference) = -17.52, Δa (red-green difference) = -1.25, Δb (yellow-blue difference) =1.40, after 50 times of washable test and -30 ℃ low temperature test, the peel strength and shear strength are higher than 1.0 kg/cm and 13 kg/cm2 respectively.
    Part 3 is HMPSA process optimization parameter design and practical validation. The taguchi method and elimination et choice translating reality (ELECTRE) are used for experimental design to reduce the number and cost of experiments and to look for the product optimization process parameter combination. The hot pressing bonding test is implemented, after 50 times of washable test and -30 ℃ low temperature test, the peel strength and shear strength are higher than 1.0 kg/cm and 13 kg/cm2. The adhesion is enhanced effectively, meeting the requirement specifications for seamless bonding of nylon fabric of textile mills.

    目錄 摘要 I ABSTRACT III 致謝 V 目錄 VI 圖目錄 X 表目錄 XIII 第1章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.2.1 熱熔感壓膠的介紹 2 1.2.2 熱熔感壓膠的種類 3 1.2.3 丙烯酸酯熱熔感壓膠的研究現況 7 1.3 研究動機與目的 11 1.4 研究內容 13 1.5 論文架構及研究流程 16 第2章 材料特性與合成原理 19 2.1 熱熔感壓膠的組成 19 2.1.1 寡聚物合成反應式 20 2.1.2 丙烯酸酯單體的選擇 23 2.1.3 光引發劑的選擇 27 2.1.4 活性稀釋劑 30 2.1.5 調節玻璃轉化溫度(Tg) 31 2.2 熱熔感壓膠之黏著理論 33 2.2.1 黏著原理 33 2.2.2 熱熔感壓膠之黏著作用力 36 2.3 自由基聚合反應 37 2.3.1 起始階段 37 2.3.2 鏈增長階段 37 2.3.3 鏈終止階段 38 2.4 實驗分析儀器與測試方法 38 2.4.1 化學性質分析 38 2.4.2 物理性質分析 40 2.4.3 其他輔助儀器 45 第3章 最佳化參數理論 46 3.1 田口法穩健設計(TAGUCHI METHOD) 48 3.1.1 穩健設計 50 3.1.2 參數設計 50 3.1.3 直交實驗設計 52 3.1.4 訊號雜訊比 55 3.1.5 品質損失函數(Quality loss function) 56 3.2 主效應分析 57 3.3 變異數分析 58 3.4 確認實驗 62 3.5 本質轉換選擇消去法 63 3.5.1 ELECTRE計算步驟 65 3.6 最佳化分析流程 70 第4章 實驗規劃與流程 71 4.1 實驗規劃 71 4.2 實驗藥品與材料 74 4.2.1 丙烯酸系單體 75 4.2.2 活性稀釋劑 77 4.2.3 光引發劑 77 4.3 實驗步驟 78 4.3.1 實驗流程圖 78 4.3.2 實驗步驟 79 第5章 結果與討論 81 5.1 光引發劑濃度對分子量的影響 81 5.2 最佳化實驗分析結果 84 5.2.1 Oligomer單品質最佳化分析結果 84 5.2.2 PSA單品質最佳化分析結果 87 5.2.3 PSA多品質最佳化分析結果 103 5.3 實務驗證 113 5.3.1 AA對Poly(BA-co-AA)Oligomer的影響 113 5.3.2 BCEA對Poly(BA-co-BCEA)Oligomer的影響 116 5.3.3 HEA對Poly(BA-co-HEA)Oligomer的影響 120 5.3.4 GMA對Poly(BA-co-AA-g-GMA)的影響 124 5.3.5 GMA對Poly(BA-co-BCEA-g-GMA)的影響 128 5.3.6 GMA對Poly(BA-co-HEA-g-GMA)的影響 132 5.3.7 引發劑濃度對剝離強度的影響 136 5.3.8 單體結構對熱熔感壓膠的影響 137 5.3.9 目標值檢測 143 5.4 效益分析 146 第6章 結論 148 第7章 參考文獻 150   圖目錄 圖1 1 整體研究規劃圖 18 圖2 1 丙烯酸酯熱熔感壓膠的組成 20 圖2 2 BA-co-AA之Oligomer化學結構式 21 圖2 3 BA-co-BCEA之Oligomer化學結構式 21 圖2 4 BA-co-HEA之Oligomer化學結構式 21 圖2 5 BA-co-AA-g-GMA之PSA化學結構式 22 圖2 6 BA-co-BCEA-g-GMA之PSA化學結構式 22 圖2 7 BA-co-HEA-g-GMA之PSA化學結構式 23 圖2 8 AIBN之熱分解方式 28 圖2 9 BPO之熱分解方式 28 圖2 10 Irgacure 184之光分解方式 28 圖2 11 TPO之光分解方式 28 圖2 12 高分子玻璃轉化與熔點溫度 33 圖2 13 機械投錨理論示意圖 34 圖2 14 擴散理論示意圖 35 圖2 15 甲基丙烯酸甲酯之起始反應 37 圖2 16 甲基丙烯酸酯之鏈增長反應 37 圖2 17 甲基丙烯酸酯之鏈終止反應 38 圖2 18 DSC圖譜 39 圖2 19 翹曲度測試 41 圖2 20 色的屬性立體圖 42 圖2 21 表面硬度與相對應的應用對照圖 44 圖2 22 表面硬度與一般規格的彈性體對照圖 44 圖3 1 田口法實施步驟 49 圖3 2 影響產品/製程之因子關係圖 51 圖3 3 直交表表示圖 54 圖3 4 最佳化分析流程圖 70 圖4 1 BA化學結構式 75 圖4 2 AA化學結構 75 圖4 3 BCEA化學結構 76 圖4 4 HEA化學結構 76 圖4 5 GMA化學結構 77 圖4 6 TPO化學結構 78 圖4 7 丙烯酸酯寡聚物的合成 78 圖4 8 熱熔感壓膠條的製備 79 圖5 1 引發劑濃度對分子量的影響 83 圖5 2 BA寡聚物分子量之因子回應圖 85 圖5 3 熱熔感壓膠剝離強度之因子回應圖 89 圖5 4 熱熔感壓膠剪切強度之因子回應圖 92 圖5 5 熱熔感壓膠翹曲度之因子回應圖 94 圖5 6 熱熔感壓膠色差之因子回應圖 98 圖5 7 熱熔感壓膠溢膠之因子回應圖 101 圖5 8 實驗多品質最佳化因子回應圖 108 圖5 9 Poly(BA-co-AA)之Oligomer聚合結構式 113 圖5 10 Poly(BA-co-AA)之Oligomer官能基圖譜 114 圖5 11 AA含量對Poly(BA-co-AA)Tg的影響 115 圖5 12 AA濃度對Poly(BA-co-AA)熱裂解溫度的影響 116 圖5 13 Poly(BA-co-BCEA)之Oligomer聚合結構式 117 圖5 14 Poly(BA-co-BCEA)之Oligomer官能基圖譜 118 圖5 15 BCEA含量對Poly(BA-co-BCEA)Tg的影響 119 圖5 16 BCEA含量對Poly(BA-co-BCEA)熱裂解溫度的影響 120 圖5 17 Poly(BA-co-HEA)之Oligomer聚合結構式 121 圖5 18 Poly(BA-co-HEA)之Oligomer官能基圖譜 122 圖5 19 Poly(BA-co-HEA)之Oligomer的玻璃轉化溫度 123 圖5 20 Poly(BA-co-HEA)之Oligomer的熱裂解溫度 124 圖5 21 Poly(BA-co-AA-co-GMA)之HMPSA聚合結構式 125 圖5 22 Poly(BA-co-AA-g-GMA)之HMPSA官能基圖譜 126 圖5 23 GMA含量對Poly(BA-co-AA-g-GMA)Tg的影響 127 圖5 24 Poly(BA-co-BCEA-g-GMA)之HMPSA聚合結構式 129 圖5 25 Poly(BA-co-BCEA-g-GMA)之HMPSA官能基圖譜 129 圖5 26 GMA含量對Poly(BA-co-BCEA-g-GMA)Tg的影響 131 圖5 27 Poly(BA-co-HEA-g-GMA)之HMPSA聚合結構式 132 圖5 28 Poly(BA-co-HEA-g-GMA)之PSA官能基圖譜 133 圖5 29 GMA含量對Poly(BA-co-HEA-g-GMA)Tg的影響 135 圖5 30 引發劑濃度對剝離強度的影響 136 圖5 31 丙烯酸單體結構比較 138 圖5 32 羧酸的官能基結構 142 圖5 33 不同甲基之酸性比較 143   表目錄 表1 1 熱熔感壓膠、熱熔膠以及感壓膠差異性 3 表1 2 熱熔感壓膠成分比較 4 表1 3 丙烯酸酯聚合型態分類比較 10 表1 4 使用他牌熱熔感壓膠的問題 12 表1 5 實驗目標 14 表2 1 常用黏性單體之Tg點與特性 24 表2 2 內聚單體之Tg點與特性 25 表2 3 功能性單體之Tg點與特性 26 表2 4 常見光引發劑的吸收峰和範圍 29 表2 5 不同光引發劑對塗層性能的影響 29 表2 6 活性稀釋劑官能基團數目 31 表2 7 凡得瓦爾力之作用力 34 表2 8 熱熔感壓膠作用力 36 表2 9 染織業色差值對照表 43 表3 1 標準直交表 53 表3 2 L9(34)×L4(23)混合直交表 53 表3 3 L9(34)直交表 54 表3 4 L18(21x37) 55 表3 5 損失函數與S/N比的關係表 57 表3 6 因子回應表 58 表3 7 變異數分析表 59 表3 8 ELECTRE法之特性總整理 64 表4 1 寡聚物BA實驗直交表(L9) 72 表4 2 熱熔感壓膠實驗直交表(L9) 73 表5 1 Poly(BA-co-AA)之Oligomer轉化率 81 表5 2 Poly(BA-co-BCEA)之PSA轉化率 82 表5 3 Poly(BA-co-HEA)之PSA轉化率 82 表5 4 添加不同光引發劑量之寡聚物分子量 83 表5 5 BA寡聚物分子量之分析結果 84 表5 6 BA寡聚物分子量之因子回應表 85 表5 7 BA寡聚物分子量之變異數分析表 86 表5 8 BA寡聚物分子量之確認實驗表 86 表5 9 熱熔感壓膠剝離強度之分析結果 88 表5 10 熱熔感壓膠剝離強度之因子回應表 88 表5 11 熱熔感壓膠剝離強度之變異數分析表 89 表5 12 熱熔感壓膠剝離強度之確認實驗表 90 表5 13 熱熔感壓膠剪切強度之分析結果 91 表5 14 熱熔感壓膠剪切強度之因子回應表 91 表5 15 熱熔感壓膠剪切強度之變異數分析表 92 表5 16 熱熔感壓膠剪切強度之確認實驗表 93 表5 17 熱熔感壓膠翹曲度之分析結果 94 表5 18 熱熔感壓膠翹曲度之因子回應表 95 表5 19 熱熔感壓膠翹曲度之變異數分析表 95 表5 20 熱熔感壓膠翹曲度之確認實驗表 96 表5 21 熱熔感壓膠色差之分析結果 97 表5 22 熱熔感壓膠色差之因子回應表 97 表5 23 熱熔感壓膠色差之變異數分析表 98 表5 24 熱熔感壓膠色差之確認實驗表 99 表5 25 熱熔感壓膠溢膠之分析結果 100 表5 26 熱熔感壓膠溢膠之因子回應表 100 表5 27 熱熔感壓膠溢膠之變異數分析表 101 表5 28 熱熔感壓膠溢膠之確認實驗表 102 表5 29 實驗本質轉換選擇消去法正規化數據 104 表5 30 實驗權重正規化矩陣 104 表5 31 實驗一致性矩陣 105 表5 32 實驗非一致性矩陣 105 表5 33 實驗一致優勢矩陣 106 表5 34 實驗非一致優勢矩陣 106 表5 35 實驗合計優勢集合矩陣 107 表5 36 實驗多品質最佳化因子回應表 107 表5 37 實驗多品質最佳化變異數分析表 108 表5 38 多品質剝離強度確認實驗表 109 表5 39 多品質剪切強度確認實驗表 110 表5 40 多品質翹曲度確認實驗表 111 表5 41 多品質色差確認實驗表 111 表5 42 多品質溢膠確認實驗表 112 表5 43 Poly(BA-co-AA)之Oligomer實驗代號 113 表5 44 AA含量對Poly(BA-co-AA)分子量的影響 114 表5 45 AA含量對Poly(BA-co-AA)Tg計算值與實測值比較 115 表5 46 Poly(BA-co-AA)的熱裂解數據 116 表5 47 Poly(BA-co-BCEA)之Oligomer實驗代號 117 表5 48 BCEA濃度對Poly(BA-co-BCEA)分子量的影響 118 表5 49 Poly(BA-co-BCEA)之Tg計算值與實測值比較 119 表5 50 Poly(BA-co-BCEA)之Oligomer的熱裂解數據 120 表5 51 Poly(BA-co-HEA)之Oligomer實驗代號 121 表5 52 HEA濃度對Poly(BA-co-HEA)分子量的影響 123 表5 53 Poly(BA-co-HEA)之Tg計算值與實測值比較 123 表5 54 Poly(BA-co-HEA)之Oligomer的熱裂解數據 124 表5 55 Poly(BA-co-AA-g-GMA)之HMPSA實驗代號 125 表5 56 Poly(BA-co-AA-g-GMA)之gel content 126 表5 57 Poly(BA-co-AA-g-GMA)之Tg計算值與實測值比較 127 表5 58 GMA濃度對Poly(BA-co-AA-g-GMA)之PSA的影響 128 表5 59 Poly(BA-co-BCEA-g-GMA)之HMPSA實驗代號 128 表5 60 Poly(BA-co-BCEA-g-GMA)之Gel content 130 表5 61 Poly(BA-co-BCEA-g-GMA)之Tg計算值與實測值比較 130 表5 62 GMA濃度對Poly(BA-co-BCEA-g-GMA)之PSA的影響 131 表5 63 Poly(BA-co-HEA-g-GMA)之HMPSA實驗代號 132 表5 64 Poly(BA-co-AA-g-GMA)之Gel content 134 表5 65 Poly(BA-co-HEA-g-GMA)之Tg計算值與實測值比較 134 表5 66 GMA濃度對Poly(BA-co-HEA-g-GMA)的影響 136 表5 67 添加不同濃度光引發劑之剝離強度 137 表5 68 接觸角與剝離強度關係 140 表5 69 功能性單體之酸鹼值 141 表5 70 化合物電負度差值與鍵型關係 141 表5 71 實驗組A (BA10G30)添加不同TPO含量之物性檢測 144 表5 72 實驗組B (BB10G30)添加不同TPO含量之物性檢測 144 表5 73 實驗組C (BH10G30)添加不同TPO含量之物性檢測 145 表5 74 全因子實驗與多品質實驗之比較 147 表5 75 熱熔感壓膠實品圖 147

    [1] R. Zhang, J. Peng, Y. Su, X. Fan, Z. Jiang, X. Zhao, J. Liu, Y. Li and J. Zhao, “A green approach to porous and dense antifouling membranes through solvent-free bulk polymerization”, Chemical Engineering Science, Vol. 135, pp. 501-508, 2015.
    [2] Z. Czech, “Development of solvent-free pressure-sensitive adhesive acrylics”, International Journal of Adhesion and Adhesives, Vol. 24, pp. 119-125, 2004.
    [3] C. W. Paul, P. Palasz, P. Foreman, and Y. Liu, ”Cationic uv-crosslinkable acrylic polymers for pressure sensitive adhesives”, EP 2545132 A2, 2013.
    [4] M. Niaounakis, “Chapter 15 – adhesive compositions”, Biopolymers: Processing and Products, pp. 459-480, 2015.
    [5] Da Chang, “Basic understanding of adhesives and application”, http://chang-da.com.tw/knowhow/viscose?lang=cn&lang=tw.
    [6] H. Dahmane, “Development of environmentally friendly warm-melt adhesives for the packaging industry”, International Journal of Adhesion and Adhesives, Vol. 16, pp. 43-45, 1996.
    [7] X. Tong, Q. Wang, Hai-xia Wang, Xiao-Hui Li, W. Wu and Xin-yi Che, “Fabrication of pH sensitive amphiphilic hot-melt pressure sensitive adhesives for transdermal drug delivery system”, International Journal of Adhesion and Adhesives, Vol. 48, pp. 217-223, 2014.
    [8] N. R. M. De Keyzer and C. A. Stoner, “Hot melt pressure sensitive positions adhesive II.” U.S. Patent 6455627[P], 2002.
    [9] C. W. Paul, M. L. Sharak, L. A. Ryan, M. Xenidou, M. G. Harwell and H. Qiwei, “Low application temperature hot melt adhesive.” U.S. 2007173153 [P], 2006.
    [10] F. Abba, C. M. Fourrier and N. Sajot, “Low application temperature hot melt adhesive.” U.S. 2007088116[P], 2007.
    [11] J. Zhang, “A new approach on the thermal stability of SDS co-polymer for HMPSA”, Polymer Degradation and Stability, Vol. 93, pp. 1008-1023, 2008.
    [12] A. F. Moustafa, “Release of a cohesively strong, general purpose hot-melt pressure sensitive adhesive from a silicone liner”, International Journal of Adhesion & Adhesives, Vol. 50, pp. 65-69, 2014.
    [13] Q. Wang, Y. Z. Wang, Z. F. Zhao and B. Fang, “Synthesis of SIS-based hot-melt pressure sensitive adhesives for transdermal delivery of hydrophilic drugs”, International Journal of Adhesion & Adhesives, Vol. 34, pp. 62-67, 2012.
    [14] P. Guo, M. Danish, P. Du, Z. Kong and R. Guan, “Viscoelastic and adhesive properties of polystyrene-hydrogenated (3,4-polyisoprene and 1,4-polyisoprene)-polystyrene and polymethyl methacrylate-polybutyl acrylate-polymethyl methacrylate-based HMPSA”, Journal of Adhesion Science and Technology, Vol. 28, 2014.
    [15] M. A. Moyano, R. París and J. M. Martín-Martínez, “Changes in compatibility, tack and viscoelastic properties of ethylene n-butyl acrylate (EBA) copolymer–pentaerythritol rosin ester blend by adding microcrystalline wax, fischer–tropsch wax and mixture of waxes”, International Journal of Adhesion & Adhesives, Vol. 65, pp. 47-53, 2016.
    [16] C. W. Paul, “Hot melt adhesives”, Adhesion Science and Engineering, Vol. 1, pp. 711-757, 2002.
    [17] L. Wen, L. Bouzidi and S. Narine, “Current Research and Devel-opment Status and Prospect of Hot-Melt Adhesives: A Review”, Industrial & Engineering Chemistry Research”, Vol. 47, pp. 7524-7532, 2008.
    [18] J. Kajtna, U. Šebenik and M. Krajnc “Synthesis and dynamic mechanical analysis of nanocomposite UV crosslinkable 100% solid acrylic pressure sensitive adhesives”, International Journal of Adhesion and Adhesives, Vol. 49, pp. 18-25, 2014.
    [19] Z. Czech, “Solvent-based pressure-sensitive adhesives for removable products”, International Journal of Adhesion and Adhesives, Vol. 26, pp. 414-418, 2006.
    [20] L. Qie and M. A. Dubé, “acrylate/methyl methacrylate/2-hydroxy ethyl methacrylate/acrylic acid latex properties on pressure sensitive adhesive performance”, International Journal of Adhesion and Adhesives, Vol. 30, pp. 654-664, 2010.
    [21] G. E. Fonseca, T. F. McKenna and M. A. Dubé, “Miniemulsion vs. conventional emulsion polymerization for pressure-sensitive adhesives production”, Chemical Engineering Science, Vol. 65, pp. 2797-2810, 2010.
    [22] A. Lopez, E. Degrandi, E. Canetta, J. L. Keddie, C. Creton and J. M. Asua, “Simultaneous free radical and addition miniemulsion polymerization: effect of the diol on the microstructure of polyurethane-acrylic pressure-sensitive adhesives”, Polymer, Vol. 52, pp. 3021-3030, 2011.
    [23] L. Zhang, Y. Cao, S. Wang, Z. Czech, L. Shao and Y. Bai, “Synthesis of poly (n-butyl acrylates) by a novel microemulsion polymerization for PSAs applications”, International Journal of Pharmaceutics, Vol. 47, pp. 69-72, 2013.
    [24] K. R. Christopher, A. Pal, G. Mirchandani and T. Dhar, “Synthesis and characterization of polystyrene-acrylate/polysiloxane (PSA/PSi) core shell polymers and evaluation of their properties for high durable exterior coatings”, Progress in Organic Coatings, Vol. 77, pp. 1063-1068, 2014.
    [25] C. Fang and Z. Lin, “Effect of propyleneimine external cross-linker on the properties of acrylate latex pressure sensitive adhesives”, International Journal of Adhesion and Adhesives, Vol. 61, pp. 1-7, 2015.
    [26] Y. Liu and D. S. Bull, “Photoinitiators and uv-crosslinkable acrylic polymers for pressure sensitive adhesives”, US 7745505 B2, 2010.
    [27] T. Scherzer, A. Tauber and R. Mehnert, “UV curing of pressure sensitive adhesives studied by real-time FTIR-ATR spectroscopy”, Vibrational Spectroscopy, Vol. 29, pp. 125-131, 2002.
    [28] W. Brostow, R. Chiu, I. M. Kalogeras and Vassilikou-Dova A., “Prediction of glass transition temperatures: binary blends and copolymers”, Materials Letters, Vol. 62, pp. 3152-3155, 2008.
    [29] C. Park and M. C. Lee, “Effects of polymeric emulsifiers on the properties of acrylic emulsion pressure-sensitive adhesives”, Journal of Applied Polymer Science, Vol. 94, pp. 1456-1460, 2004.
    [30] D. J. Kim, H. J. Kim and G. H. Yoon, “Effect of substrate and tackifier on peel strength of SIS (styrene-isoprene-styrene)-based HMPSAs”, International Journal of Adhesion and Adhesives, Vol. 25, pp. 288-295, 2005.
    [31] S. Ebnesajjad, “Handbook of adhesives and surface preparation”, USA, 2010.
    [32] M. A. Dubé. and A. Penlidis, “A systematic approach to the study of multicomponent polymerization kinetics—the butyl acrylate/methyl methacrylate/vinyl acetate example: 1. Bulk copolymerization”, Polymer, Vol. 36, pp. 587-598, 1995.
    [33] L. F. M. da Silva, R. D. Adams and M. Gibbs, ” Manufacture of adhesive joints and bulk specimens with high-temperature adhe-sives”, International Journal of Adhesion & Adhesives, Vol. 24, pp. 69-83, 2004.
    [34] N. Karyu, K. Shitajima, S. Fujii, Y. Nakamura and Y. Urahama, “Contact time dependence of tack for crosslinked polyacrylic pressure-sensitive adhesives with two different molecular structures”, International Journal of Adhesion and Adhesives, Vol. 60, pp.75-82, 2015.
    [35] Y. Zhang, H. Miao and W. Shi, “Photopolymerization behavior and properties of highly branched polyester acrylate containing thioether linkage used for UV curing coatings”, Progress in Organic Coatings, Vol. 71, pp. 48-55, 2011.
    [36] S. Jafarzadeh, P. M. Claesson, Per-Erik Sundell, Eric Tyrode and Jinshan Pan, “Active corrosion protection by conductive composites of polyaniline in a uv-cured polyester acrylate coating”, Vol. 90, pp.154-162, 2016.
    [37] R. Dong and L. Liu, “Preparation and properties of acrylic resin coating modified by functional graphene oxide”, Applied Surface Science, Vol. 368, pp. 378-387, 2016.
    [38] Joon-Suk Choi, J. Seo, S. B. Khan, E. S. Jang and H. Han, “Effect of acrylic acid on the physical properties of uv-cured poly(urethane acrylate-co-acrylic acid) films for metal coating”, Progress in Organic Coatings, Vol. 71, pp. 110-116, 2011.
    [39] Y. W, B. Kong and K. Gu,“Study on New Photoinitiator System for Pigmented uv curing coatings”, Paint and Coatings Industry, Vol. 37, pp.23-29 , 2007.
    [40] A. Kondyurin and M. Bilek, “Wetting”, ion beam treatment of polymers (second edition), pp.129-143, 2015.
    [41] T. Bahners, L. Prager, A. Pender and J. S. Gutmann, “Super-wetting surfaces by plasma- and uv-based grafting of micro-rough acrylate coatings”, Progress in Organic Coatings, Vol. 76, pp. 1356-1362, 2013.
    [42] T. G. Fox, “Influence of diluent and of copolymer composition on the glass temperature of a polymer system”, Bulletin of the American Physical Society, Vol. 1, pp. 123, 1956.
    [43] W. Brostow, R. Chiu, I. M. Kalogeras and A. Vassilikou-Dova, “Prediction of glass transition temperatures: binary blends and copolymers”, Materials Letters, Vol. 62, pp. 3152-3155, 2008.
    [44] A. F. Kozmidis-Petrović, “Sensitivity of the hruby, lu–liu, fan, yuan, and long glass stability parameters to the change of the ratios of characteristic temperatures Tx/Tg and Tm/Tg”, Thermochimica Acta, Vo. 510, pp. 137-143, 2010.
    [45] P. Upadhyaya and S. Kumar, “Pull-out capacity of adhesive an-chors: an analytical solution”, International Journal of Adhesion and Adhesives, Vol. 60,pp. 54-62, 2015.
    [46] K. A. Savin, ”Chapter 5 – radicals and radical anions”, Writing Reaction Mechanisms in Organic Chemistry (Third Edition), pp. 237-292, 2014.
    [47] R. Bail, “The effect of a type I photoinitiator on cure kinetics and cell toxicity in projection-microstereolithography”, Procedia CIRP, Vol. 5, pp. 222-225, 2013.
    [48] G. Wu, Y. Jiang, L. Ye, S. Zeng, P. Yu and W. Xu, “A novel uv-crosslinked pressure-sensitive adhesive based on photoin-itia-tor-grafted SBS”, International Journal of Adhesion & Adhe-sives, Vol. 41, pp. 73-79, 2013.
    [49] Standard test method for peel adhesion of pressure-sensitive tape, ASTM D3330, 2010.
    [50] Standard practice for computing the colors of objects by using the CIE system, ASTM E308-15, 2015.
    [51] D. L. Da Silva, C. T. Mattos, M. V. de Araujo, and A. C. de Oliveira Ruellas, “Color stability and fluorescence of different orthodontic esthetic archwires”, Angle Orthod, Vol. 83, pp. 127-132, 2013.
    [52] Standard test method for colorfastness and transfer of color in the washing of leather, ASTM D2096, 2011.
    [53] Standard test method for rubber property—durometer hardness, ASTM D2240, 2010.
    [54] Standard test method for softening point of bitumen (ring-and-ball apparatus), ASTM D36, 2014.
    [55] F. G. Philip Hall, N. J. Miles, Q. Ding and T. Wu, “Improvement of mechanical properties of recycled plastic blends via optimizing processing parameters using the taguchi method and principal component analysis”, Materials & Design, Vol. 62, pp.189-198, 2014.
    [56] E. Kuram, E. Tasci, A. I. Altan, M. M. Medra, F. Yilmaz and B. Ozcelik, “Investigating the effects of recycling number and injec-tion parameters on the mechanical properties of glass-fibre rein-forced nylon 6 using taguchi method”, Materials & Design, Vol. 49, pp. 139-150, 2013.
    [57] A. Nazari, H. Khanmohammadi, M. Amini, H. Hajiallahyari and A. Rahimi, “Production geopolymers by portland cement: designing the main parameters’ effects on compressive strength by taguchi method”, Materials & Design, Vol. 41, pp. 43-49, 2012.
    [58] Li-Cheng Hsu, “Preparation of silica nanoparticles by precipitation using taguchi method”, Yuan Ze University, Taiwan, 2003.
    [59] Chien-Chih Liu, “Parameter optimalization of start-end area of TFT-LCD sal dspense uing tguchi mthod”, National Kaohsiung University of Applied Sciences, Taiwan, 2014.
    [60] Yi-Cheng Liao, “Applying tguchi quality engineering to explore the optimum parameters of semi-finished products - take rubber industry as an example”, National Yunlin University of Science and Technology, Taiwan, 2015.
    [61] H. H. Lee, “Taguchi mthods: pinciples and pactices of qality dsign”, Gau Lih Book Co, Taipei, Taiwan, 2013.
    [62] B. Roy, “The outranking approach and the foundations of ELECTRE methods”, Theory and Decision, Vol. 31, pp. 49-73, 1991.
    [63] S. Corrente, S. Greco and R. Slowinski, “Multiplle criteria hierarchy process with ELECTRE and PROMETHEE”, Omega, Vol. 41, pp. 820-846, 2013.
    [64] Z. Czech and R. Pełech , “The thermal degradation of acrylic pressure-sensitive adhesives based on butyl acrylate and acrylic acid” , Progress in Organic Coatings, Vol. 65, pp. 84-87, 2009.
    [65] Z. Czech , A. Kowalczyk, M. Gąsiorowska, J. Soroka and J. Kabatc, “Novel pyridinium derivatives as very efficient photoinitiators for uv-activated synthesis of acrylic pressure-sensitive adhesives”, International Journal of Adhesion and Adhesives, Vol. 31, pp. 634-638, 2011.
    [66] Seung-Suk Baek, Seok-Ho Hwang, “Eco-friendly uv-curable pressure sensitive adhesives containing acryloyl derivatives of monosaccharides and their adhesive performances”, International Journal of Adhesion and Adhesives, Vol. 70, pp. 110-116, 2016.
    [67] V. Dimitrov and T. Komatsu, “Correlation among electronegativity, cation polarizability, optical basicity and single bond strength of simple oxides”, Journal of Solid State Chemistry, Vol. 196, pp.574-578, 2012.
    [68] G. Roos and C. Roos, “Organic chemistry concepts: chapter 6–acids and bases”, Academic press, pp. 83-101, 2015.
    [69] U. Warde and N. Sekar, “Nlophoric mono-azo dyes with negative solvatochromism and in-built esipt unit from ethyl 1,3-dihydroxy-2-naphthoate: estimation of excited state dipole moment and pH study”, Dyes and Pigments, Vol. 137, pp. 384-394, 2016.
    [70] L. Wang, Y. S. Lin, Z. Y. Chao, P. P. Chen, Y. N. Wang and Y. F. Zhou, “Role of surface functionality on the formation of raspber-ry-like polymer/silica composite particles: weak acid–base interaction and steric effect”, Applied Surface Science, Vol. 342, pp. 92-100, 2015.
    [71] T. Morris and T. Zubkov, “Steric effects of carboxylic capping ligands on the growth of the CdSe quantum dots”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 443, pp. 439-449, 2014.
    [72] T. Fujihara, A. Yoshida, M. Satou, Y. Tanji, J. Terao and Y. Tsuji, “Steric effect of carboxylic acid ligands on Pd-catalyzed C–H activation reactions”, Catalysis Communications, Vol. 84, pp. 71-74, 2016.

    QR CODE