簡易檢索 / 詳目顯示

研究生: 澎國 元
Nguyen-Quoc Banh
論文名稱: 創新式內建荷重計之微型球擠光工具之研製
Development of an Innovative Micro Ball-Burnishing Tool Embedded with a Load Cell
指導教授: 修芳仲
Fang-Jung Shiou
口試委員: 鄧昭瑞
Geo-Ry Tang
許巍耀
Wei-Yao Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 56
中文關鍵詞: Micro ball-burnishingTaguchi orthogonal arrayANOVAfull factorial experiment
外文關鍵詞: Micro ball-burnishing, Taguchi orthogonal array, ANOVA, full factorial experiment
相關次數: 點閱:223下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • A new load cell embedded micro ball-burnishing tool, clamping a ball with the diameter of 0.5mm, has been designed and manufactured. By utilizing the Taguchi's orthogonal array, analysis of variance (ANOVA), and F-ratio analysis and full factorial experiment the optimal condition for ball-burnishing process of specific material can be determined. The Oxygen Copper Free (OFC) specimens were used as the tested sample for the tool. The four control factors of ball-burnishing process studied in this research were: ball material, burnishing force, step over, and burnishing speed. Among them, burnishing force and step over have significant effects on the surface roughness of the specimen. The optimal ball-burnishing condition is the combination of Silicon Nitride material ball, burnishing force of 2N, step over of 6μm, and the burnishing speed of 400mm/min. The burnished surface of OFC material can be improved around 77.5% from Ra 1.2μm to Ra 0.2μm. The optimal burnishing condition for plane surface then applied on the cylindrical convex – plano lens model. The surface roughness of Ra 0.32μm from the ground surface of Ra 1.43μm was obtainable.
    Keyword: Micro ball-burnishing process, Taguchi's method, ANOVA, full factorial experiment


    A new load cell embedded micro ball-burnishing tool, clamping a ball with the diameter of 0.5mm, has been designed and manufactured. By utilizing the Taguchi's orthogonal array, analysis of variance (ANOVA), and F-ratio analysis and full factorial experiment the optimal condition for ball-burnishing process of specific material can be determined. The Oxygen Copper Free (OFC) specimens were used as the tested sample for the tool. The four control factors of ball-burnishing process studied in this research were: ball material, burnishing force, step over, and burnishing speed. Among them, burnishing force and step over have significant effects on the surface roughness of the specimen. The optimal ball-burnishing condition is the combination of Silicon Nitride material ball, burnishing force of 2N, step over of 6μm, and the burnishing speed of 400mm/min. The burnished surface of OFC material can be improved around 77.5% from Ra 1.2μm to Ra 0.2μm. The optimal burnishing condition for plane surface then applied on the cylindrical convex – plano lens model. The surface roughness of Ra 0.32μm from the ground surface of Ra 1.43μm was obtainable.
    Keyword: Micro ball-burnishing process, Taguchi's method, ANOVA, full factorial experiment

    List of figures...............................................................iv List of tables.................................................................v Chapter 1 INTRODUCTION.........................................................1 1.1 Research motivation....................................................1 1.2 Literature review......................................................1 1.3 Thesis objectives......................................................4 Chapter 2 BASIC PRINCIPLE......................................................5 2.1 Milling process and milling parameters.................................5 2.1.1 Milling process........................................................5 2.1.2 Milling parameters.....................................................6 2.2 Ball-burnishing process................................................8 2.2.1 The simple theory of ball burnishing deformation.........................8 2.2.2 Relationship between surface roughness and ball burnishing parameters.10 2.3 Taguchi method........................................................13 2.3.1 Introduction..........................................................13 2.3.2 Control factors and noise factors.....................................14 2.3.3 Orthogonal array......................................................15 2.3.4 ANOVA and S/N Analysis................................................16 2.3.5 Confirmation experiment...............................................17 Chapter 3 DEVELOPMENT OF A MICRO BALL-BURNISHING SYSTEM.......................19 3.1 Design of a new micro ball burnishing tool............................19 3.2 Limitation of the design of micro ball-burnishing tool................22 3.3 Force measurement system..............................................22 3.3.1 Schematic of measurement system.......................................22 3.3.2 Force measurement system components...................................23 3.3.3 Calibration of force measurement system...............................27 Chapter 4 EXPERIMENTAL WORK...................................................33 4.1 Introduction..........................................................33 4.2 Experimental workpiece................................................34 4.3 Milling process.......................................................34 4.4 Micro ball burnishing process.........................................35 4.4.1 Configuration of Taguchi’s orthogonal array..........................35 4.4.2 Setup of the ball burnishing process..................................39 Chapter 5 EXPERIMENTAL RESULTS................................................41 5.1 Experimental results of the L18 Taguchi’s orthogonal array...........41 5.2 Full factorial experiment.............................................44 5.3 Discussions...........................................................45 5.3.1 Surface roughness improvement.........................................45 5.3.2 Single path width under the optimal ball-burnishing parameters........46 5.3.3 Effect of burnishing force on surface roughness.......................47 5.3.4 Effect of number of pass..............................................48 5.3.5 Effect of step – over on the surface roughness.......................48 5.4 Application...........................................................49 5.4.1 Application model.....................................................49 5.4.2 Fabrication of the lens model.........................................50 5.4.3 Results and discussions...............................................51 Chapter 6 CONCLUSIONS.........................................................53 6.1 Conclusions...........................................................53 6.2 Future works..........................................................53

    [1] N. H. Loh, S. C. Tam. (1988). Effects of ball-burnishing parameters on surface finish - A literature survey and discussion. Precision Engineering, X (4), 215-220.
    [2] N. H. Loh, S. C. Tam, and S. Miyazawa. (1989). A study of the effects of ball-burnishing parameters on surface roughness using factorial design. Journal of Mechanical Working Technology (18), 53-61.
    [3] N. H. Loh, S. C. Tam, and S. Miyazawa. (1993). Ball burnishing of tool steel. Precision Engineering, XV (2), 100-105.
    [4] Adel Mahmood Hassan, Aiman Sharef Al-Bsharat. (1996). Improvements in some properties of non-ferrous metals by the application of the ball-burnishing process. Journal of Materials Processing Technology (59), 250-256.
    [5] K. Skalski, A. Morawski, and W. Przybylski. (1995). Analysis of contact elastic-plastic strains during the process of burnishing. Int. J. Mech. Sci., 37 (5), 461-472.
    [6] Korzynski, M. (2007). A model of smoothing slide ball-burnishing and an analysis of the parameter interaction. International Journal of Machine Tools & Manufacture, 47, 1956-1964.
    [7] Y. C. Lin, S. W. Wang, H.-Y. Lai. (2004). The relationship between surface roughness and burnishing factor in the burnishing process. Int J Adv Manuf Technol (23), 666-671.
    [8] Hongyun Lou, Jianying Liu, Lijiang Wang, Qunpeng Zhong. (2006). The effect of burnishing parameters on burnishing force and surface microhardness. Int J Adv Manuf Technol (28), 707-713.
    [9] L. N. López de Lacalled, A. Lamikiz, and J. A. Sánchez. (2007). The effect of ball burnishing on heat-treated steel and Inconel 718 milled surfaes. Int J Adv Manuf Technol (32), 958-968.
    [10] Fang-Jung Shiou, Chien-Hua Chen. (2003). Freeform surface finish of plastic injection mold by using ball-burnishing process. Journal of Materials Processing Technology (140), 248-254.
    [11] Fang-Jung Shiou, Chuing-Hsiung Chuang. (2010). Precision surface finish of the mold steel PDS5 using an innovative ball burnishing tool embedded with a load cell. Precision Engineering (34), 76-84.
    [12] http://www.mfg.mtu.edu/marc/primers/milling/
    [13] http://www.kanabco.com/vms/glossary/m/mill_parts.html
    [14] S. Kalpakjian, S. R. Schmid, Manufacturing, Engineering & Technology, Fifth Edition, ISBN 0-13-148965-8.©2006 Pearson Education, Inc., Upper Saddle River, NJ.
    [15] ASME B46.1-1995, Surface texture (surface roughness, waviness, and lay): an American national standard, American Society of Mechanical Engineers, New York, 1996.
    [16] R. K.Roy, Design of experiments using the Taguchi approach: 16 Steps to product and process improvement, John Wiley & Sons, Inc., New York, 2001.
    [17] http://measurementsensors.honeywell.com/
    [18] http://www.futek.com/product.aspx?stock=FSH01449
    [19] http://www.eagledaq.com/adpt-6868-scd-scsi-ii-f-centronics-dsub-to-69way-screw-terminal
    [20] http://www.eagledaq.com/pci-703-daq-card-400khz-16-32-64channel-14bit-ad-two-dacs-multi
    [21] H. W. Lilliefore. (1967). On the Kolmogorow-Simornov Test for Normality with Mean and Variance Unknown. Journal of the American Statistical Association (62), 399-402.

    QR CODE