簡易檢索 / 詳目顯示

研究生: 王雅仙
Ya-Hsien Wang
論文名稱: 羧甲基纖維素接枝S-亞硝基穀胱甘肽對遭受氧化損傷之纖維母細胞之效用
Effects of S-Nitrosoglutathione-grafted carboxymethyl cellulose on oxidative damaged fibroblasts
指導教授: 鄭詠馨
Yung-Hsin Cheng
口試委員: 白孟宜
Meng-Yi Bai
曾靖孋
Ching-Li Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 149
中文關鍵詞: 糖尿病足部潰瘍羧甲基纖維素氧化壓力S-亞硝基穀胱甘肽
外文關鍵詞: diabetic foot ulcers, carboxymethyl cellulose, oxidative stress, S-Nitrosoglutathione
相關次數: 點閱:310下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

糖尿病足部潰瘍 (Diabetic foot ulcers) 因患部慢性發炎及氧化壓力的作用,故有癒合不全及難以修復的問題。在傷口敷料研究中又以水膠型傷口敷料為大宗並以高分子材料為基底,但目前多以非活性成分為主故療效相當有限。噴霧型傷口敷料 (Sprayable wound dressings) 因有減少感染風險及便利性之優勢,故本研究欲開發出具可用於糖尿病足部潰瘍之噴霧型傷口敷料,並以羧甲基纖維素(Carboxymethyl cellulose) 為基底,接枝S-亞硝基穀胱甘肽 (S-Nitrosoglutathione),其特色在於可促組織增生及調節發炎反應,相較於其他 NO donors 其半衰期有較長的優勢。

本研究製備接枝 S-亞硝基穀胱甘肽之羧甲基纖維素,以傅立葉轉換紅外線光譜、核磁共振光譜、Ellman’s 分析法及 di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium 檢測法、Griess 檢測法、場發式掃描式電子顯微鏡、流變儀及體外藥物釋放測定進行特性分析,細胞實驗的部分則以小鼠纖維細胞
(L-929) 進行,分別以細胞存活率評估穀胱甘肽及 S-亞硝基穀胱甘肽對 L-929細胞之最大安全濃度,並評估材料對細胞是否具有毒性,後續以過氧化氫建立 L-929 細胞之損傷模型,並於損傷後與羧甲基纖維素接枝S-亞硝基穀胱甘肽進行共培養,進而評估材料對損傷細胞的效用。


Chronic inflammation and oxidative stress result in flawed healing process in
diabetic foot ulcers. Although lots of polymer-based hydrogel wound dressings were
investigated, most of their main ingredients are inactive, which leads to limited
therapeutic effects in diabetic foot ulcers. Sprayable polymer-based wound dressings
have the advantages of reducing infections and ease of use. S-Nitrosoglutathione
(GSNO) can promote wound healing and has anti-inflammatory ability. The half-life of
GSNO is longer than other NO donors.
In the study, GSNO-grafted carboxymethyl cellulose (GSNO-CMC) was prepared
and characterized. The properties of developed formulations were analyzed using
Fourier-transform infrared spectroscopy, nuclear magnetic resonance spectroscopy,
Ellman’s assay, and di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium assay, Griess assay, field emission scanning electron microscopy, rheometer, in-vitro drug release study. The mouse fibroblast cell line (L-929 cells) was used to evaluate the optimal concentration of therapeutic molecules and in-vitro biocompatibility test of GSNO-CMC via cell viability. The effects of GSNO-CMC were demonstrated using H2O2-induced damage model of L-929 cells.

摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 一、 研究背景與動機 1 二、 研究目的 1 第二章 理論基礎 4 一、 糖尿病介紹 4 二、 高血糖所引起之生理變化 6 (一) 高血糖對血液性質之影響 6 (二) 高血糖於細胞內氧化壓力之影響 8 三、 正常傷口與慢性傷口之病理機轉 12 (一) 正常傷口癒合機轉 12 (二) 糖尿病慢性傷口機轉 14 四、 目前治療及研究策略 16 (一) 臨床治療方式 16 (二) 傷口敷料 20 (三) 水膠型傷口敷料 23 (四) 噴霧型傷口敷料 26 (五) 治療糖尿病足部潰瘍理想傷口敷料 28 五、 羧甲基纖維素 29 六、 穀胱甘肽 30 七、 一氧化氮 31 第三章 實驗材料與方法 34 一、 實驗藥品 34 二、 實驗儀器 35 三、 實驗流程 38 (一) CMC-GSH 水膠合成 40 (二) CMC-GSNO 水膠合成 41 (三) CMC-GSH官能基測定 42 (四) CMC-GSH 化學結構分析 43 (五) CMC-GSH 硫醇基測定 44 (六) CMC-GSH 自由基清除能力評估 45 (七) GSH 藥物安全濃度測試 46 (八) CMC-GSNO官能基測定 47 (九) CMC-GSNO 之 NO 定量測試 47 (十) CMC-GSNO 表面形貌分析 50 (十一) CMC-GSNO 流變性質分析 51 (十二) CMC-GSNO 之 NO 釋放測定 51 (十三) CMC-GSNO 自由基清除能力評估 54 (十四) GSNO 藥物安全濃度測試 54 (十五) CMC-GSNO 生物相容性測試 55 (十六) CMC-GSNO 細胞遷移率評估 55 (十七) 細胞損傷模型建立 56 (十八) 細胞損傷後治療模型 56 (十九) 統計分析方法 58 第四章 結果與討論 59 一、 CMC-GSH 官能基測定 59 二、 CMC-GSH 化學結構分析 62 三、 CMC-GSH 硫醇基測定 67 四、 CMC-GSH 自由基清除能力評估 70 五、 GSH 藥物安全濃度測試 72 六、 CMC-GSH 總結 74 七、 CMC-GSNO 官能基測定 77 八、 CMC-GSNO 之 NO 定量測試 79 九、 CMC-GSNO 形貌分析 81 十、 CMC-GSNO 流變性質分析 83 十一、 CMC-GSNO 之 NO 釋放測定 92 十二、 CMC-GSNO 自由基清除能力評估 101 十三、 GSNO 藥物安全濃度測試 103 十四、 CMC-GSNO 生物相容性測試 105 十五、 CMC-GSNO 細胞遷移率 107 十六、 細胞損傷模型建立 109 十七、 細胞凋亡率 111 十八、 細胞存活率 113 第五章 結論 116 第六章 參考文獻

[1] A.D. Association, Diagnosis and classification of diabetes mellitus, Diabetes
care 37(Supplement_1) (2014) S81-S90.
[2] J.B. Cole, J.C. Florez, Genetics of diabetes mellitus and diabetes complications,
Nature reviews nephrology 16(7) (2020) 377-390.
[3] D.G. Armstrong, M.A. Swerdlow, A.A. Armstrong, M.S. Conte, W.V. Padula,
S.A. Bus, Five year mortality and direct costs of care for people with diabetic foot
complications are comparable to cancer, Journal of foot and ankle research 13(1)
(2020) 1-4.
[4] M. Monteiro‐Soares, E.J. Boyko, W. Jeffcoate, J.L. Mills, D. Russell, S.
Morbach, F. Game, Diabetic foot ulcer classifications: a critical review,
Diabetes/metabolism research and reviews 36 (2020) e3272.
[5] J.L. Burgess, W.A. Wyant, B. Abdo Abujamra, R.S. Kirsner, I. Jozic, Diabetic
wound-healing science, Medicina 57(10) (2021) 1072.
[6] V.R. Güiza-Argüello, V.A. Solarte-David, A.V. Pinzón-Mora, J.E. Ávila-
Quiroga, S.M. Becerra-Bayona, Current Advances in the Development of
Hydrogel-Based Wound Dressings for Diabetic Foot Ulcer Treatment, Polymers
14(14) (2022) 2764.
[7] K.J. Kus, E.S. Ruiz, Wound dressings–a practical review, Current Dermatology
Reports 9 (2020) 298-308.
[8] A. American Diabetes, 2. Classification and Diagnosis of Diabetes: Standards
of Medical Care in Diabetes-2018, Diabetes Care 41(Suppl 1) (2018) S13-S27.
[9] H. Doğruel, M. Aydemir, M.K. Balci, Management of diabetic foot ulcers and
the challenging points: An endocrine view, World Journal of Diabetes 13(1) (2022)
27.
[10] Y. Wang, P. Yang, Z. Yan, Z. Liu, Q. Ma, Z. Zhang, Y. Wang, Y. Su, The
relationship between erythrocytes and diabetes mellitus, Journal of Diabetes
Research 2021 (2021).
[11] B. Cimbaljevic, A. Vasilijevic, S. Cimbaljevic, B. Buzadzic, A. Korac, V.
Petrovic, A. Jankovic, B. Korac, Interrelationship of antioxidative status, lipid
peroxidation, and lipid profile in insulin-dependent and non-insulin-dependent
diabetic patients, Can J Physiol Pharmacol 85(10) (2007) 997-1003.
[12] S. Lee, M.Y. Lee, J.S. Nam, S. Kang, J.S. Park, S. Shin, C.W. Ahn, K.R. Kim,
Hemorheological approach for early detection of chronic kidney disease and
diabetic nephropathy in type 2 diabetes, Diabetes Technology & Therapeutics
17(11) (2015) 808-815.
[13] B. Venerando, A. Fiorilli, G. Croci, C. Tringali, G. Goi, L. Mazzanti, G.
Curatola, G. Segalini, L. Massaccesi, A. Lombardo, Acidic and neutral sialidase in
the erythrocyte membrane of type 2 diabetic patients, Blood, The Journal of the
American Society of Hematology 99(3) (2002) 1064-1070.
[14] G. Bianchetti, L. Viti, A. Scupola, M. Di Leo, L. Tartaglione, A. Flex, M. De
Spirito, D. Pitocco, G. Maulucci, Erythrocyte membrane fluidity as a marker of
diabetic retinopathy in type 1 diabetes mellitus, Eur J Clin Invest 51(5) (2021)
e13455.
[15] C. Weykamp, HbA1c: a review of analytical and clinical aspects, Ann Lab
Med 33(6) (2013) 393-400.
[16] K. Blaslov, I. Kruljac, G. Mirosevic, P. Gacina, S.O. Kolonic, M. Vrkljan, The
prognostic value of red blood cell characteristics on diabetic retinopathy
development and progression in type 2 diabetes mellitus, Clin Hemorheol
Microcirc 71(4) (2019) 475-481.
[17] O.M. Ighodaro, Molecular pathways associated with oxidative stress in
diabetes mellitus, Biomedicine & pharmacotherapy 108 (2018) 656-662.
[18] S.S. Garg, J. Gupta, Polyol pathway and redox balance in diabetes,
Pharmacological Research (2022) 106326.
[19] M. Ghamali, S. Chtita, R. Hmamouchi, A. Adad, M. Bouachrine, T. Lakhlifi,
The inhibitory activity of aldose reductase of flavonoid compounds: Combining
DFT and QSAR calculations, Journal of Taibah University for Science 10(4) (2018)
534-542.
[20] J. Fujii, J.-i. Ito, X. Zhang, T. Kurahashi, Unveiling the roles of the glutathione
redox system in vivo by analyzing genetically modified mice, Journal of clinical
biochemistry and nutrition 49(2) (2011) 70-78.
[21] L.S. Gewin, TGF-β and diabetic nephropathy: Lessons learned over the past
20 years, The American journal of the medical sciences 359(2) (2020) 70-72.
[22] R.-M. Liu, L.P. Desai, Reciprocal regulation of TGF-β and reactive oxygen
species: A perverse cycle for fibrosis, Redox biology 6 (2015) 565-577.
[23] Q. Kang, C. Yang, Oxidative stress and diabetic retinopathy: Molecular
mechanisms, pathogenetic role and therapeutic implications, Redox Biol 37 (2020)
101799.
[24] A.L. Birkenfeld, G.I. Shulman, Nonalcoholic fatty liver disease, hepatic
insulin resistance, and type 2 diabetes, Hepatology 59(2) (2014) 713-723.
[25] R. Giordo, G.K. Nasrallah, A.M. Posadino, F. Galimi, G. Capobianco, A.H.
Eid, G. Pintus, Resveratrol-elicited pkc inhibition counteracts nox-mediated
endothelial to mesenchymal transition in human retinal endothelial cells exposed
to high glucose, Antioxidants 10(2) (2021) 224.
[26] A. Katsarou, S. Gudbjörnsdottir, A. Rawshani, D. Dabelea, E. Bonifacio, B.J.
Anderson, L.M. Jacobsen, D.A. Schatz, Å. Lernmark, Type 1 diabetes mellitus,
Nature reviews Disease primers 3(1) (2017) 1-17.
[27] A. Opneja, S. Kapoor, E.X. Stavrou, Contribution of platelets, the coagulation
and fibrinolytic systems to cutaneous wound healing, Thromb Res 179 (2019) 56-
63.
[28] K. Raziyeva, Y. Kim, Z. Zharkinbekov, K. Kassymbek, S. Jimi, A. Saparov,
Immunology of acute and chronic wound healing, Biomolecules 11(5) (2021) 700.
[29] T. Josefs, T.J. Barrett, E.J. Brown, A. Quezada, X. Wu, M. Voisin, J. Amengual,
E.A. Fisher, Neutrophil extracellular traps promote macrophage inflammation and
impair atherosclerosis resolution in diabetic mice, JCI insight 5(7) (2020).
[30] A. El Ayadi, J.W. Jay, A. Prasai, Current approaches targeting the wound
healing phases to attenuate fibrosis and scarring, International journal of molecular
sciences 21(3) (2020) 1105.
[31] E.S. Keskin, E.R. Keskin, M.B. Öztürk, D. Çakan, The effect of MMP-1 on
wound healing and scar formation, Aesthetic plastic surgery 45 (2021) 2973-2979.
[32] A.C. Yilmaz, D. Aygin, Honey Dressing in Wound Treatment: A Systematic
Review, Complement Ther Med 51 (2020) 102388.
[33] H. Wu, M. Zhong, Y. Wang, The Interdependence of Inflammation and ROS
in Cancer: Focus on Tumor Microenvironment, Handbook of Oxidative Stress in
Cancer: Mechanistic Aspects (2022) 1135-1151.
[34] E. Everett, N. Mathioudakis, Update on management of diabetic foot ulcers,
Ann N Y Acad Sci 1411(1) (2018) 153-165.
[35] A. Bellingeri, F. Falciani, P. Traspedini, A. Moscatelli, A. Russo, G. Tino, P.
Chiari, A. Peghetti, Effect of a wound cleansing solution on wound bed preparation
and inflammation in chronic wounds: a single-blind RCT, Journal of Wound Care
25(3) (2016) 160-168.
[36] A. Banu, M.M. Noorul Hassan, J. Rajkumar, S. Srinivasa, Spectrum of
bacteria associated with diabetic foot ulcer and biofilm formation: A prospective
study, Australas Med J 8(9) (2015) 280-5.
[37] D.C. Thomas, C.L. Tsu, R.A. Nain, N. Arsat, S.S. Fun, N.A.S.N. Lah, The
role of debridement in wound bed preparation in chronic wound: A narrative
review, Annals of medicine and surgery 71 (2021) 102876.
[38] M.A. Ortega, O. Fraile-Martinez, C. García-Montero, E. Callejón-Peláez,
M.A. Sáez, M.A. Álvarez-Mon, N. García-Honduvilla, J. Monserrat, M. Álvarez-
Mon, J. Bujan, A general overview on the hyperbaric oxygen therapy: applications,
mechanisms and translational opportunities, Medicina 57(9) (2021) 864.
[39] L. Camison, S. Naran, W.-W. Lee, L.J. Grunwaldt, A.J. Davit, J.A. Goldstein,
K.S. O'Toole, J.E. Losee, O.A. Adetayo, Hyperbaric oxygen therapy for large
composite grafts: an alternative in pediatric facial reconstruction, Journal of Plastic,
Reconstructive & Aesthetic Surgery 73(12) (2020) 2178-2184.
[40] P. Longobardi, K. Hoxha, M.H. Bennett, Is there a role for hyperbaric oxygen
therapy in the treatment of refractory wounds of rare etiology?, Diving and
Hyperbaric Medicine 49(3) (2019) 216.
[41] L. Villeirs, T. Tailly, P. Ost, M. Waterloos, K. Decaestecker, V. Fonteyne, C.
Van Praet, N. Lumen, Hyperbaric oxygen therapy for radiation cystitis after pelvic
radiotherapy: Systematic review of the recent literature, International Journal of
Urology 27(2) (2020) 98-107.
[42] M. Meloni, V. Izzo, E. Vainieri, L. Giurato, V. Ruotolo, L. Uccioli,
Management of negative pressure wound therapy in the treatment of diabetic foot
ulcers, World journal of orthopedics 6(4) (2015) 387.
[43] S. Borys, J. Hohendorff, C. Frankfurter, B. Kiec‐Wilk, M.T. Malecki,
Negative pressure wound therapy use in diabetic foot syndrome—from
mechanisms of action to clinical practice, European Journal of Clinical
Investigation 49(4) (2019) e13067.
[44] G. Norman, C. Shi, E.L. Goh, E.M. Murphy, A. Reid, L. Chiverton, M.
Stankiewicz, J.C. Dumville, Negative pressure wound therapy for surgical wounds
healing by primary closure, Cochrane Database of Systematic Reviews (4) (2022).
[45] M.E. Fernando, R.G. Crowther, P.A. Lazzarini, S. Yogakanthi, K.S. Sangla, P.
Buttner, R. Jones, J. Golledge, Plantar pressures are elevated in people with
longstanding diabetes-related foot ulcers during follow-up, PLoS One 12(8) (2017)
e0181916.
[46] M. Zubair, Prevalence and interrelationships of foot ulcer, risk-factors and
antibiotic resistance in foot ulcers in diabetic populations: a systematic review and
meta-analysis, World journal of diabetes 11(3) (2020) 78.
[47] W.-J. Kang, L. Shi, Y. Shi, L. Cheng, H.-W. Ai, W.-J. Zhao, Analysis on
distribution, drug resistance and risk factors of multi drug resistant bacteria in
diabetic foot infection, Biomed Res 28(22) (2018) 10186-90.
[48] L. Das, A. Rastogi, E.B. Jude, M. Prakash, P. Dutta, A. Bhansali, Long-term
foot outcomes following differential abatement of inflammation and
osteoclastogenesis for active Charcot neuroarthropathy in diabetes mellitus, PLoS
One 16(11) (2021) e0259224.
[49] D. Grennan, S. Wang, Steroid side effects, Jama 322(3) (2019) 282-282.
[50] H. Derakhshandeh, S.S. Kashaf, F. Aghabaglou, I.O. Ghanavati, A. Tamayol,
Smart bandages: the future of wound care, Trends in biotechnology 36(12) (2018)
1259-1274.
[51] R. Dong, B. Guo, Smart wound dressings for wound healing, Nano Today 41
(2021) 101290.
[52] J.M. Souza, M. Henriques, P. Teixeira, M.M. Fernandes, R. Fangueiro, A.
Zille, Comfort and infection control of chitosan-impregnated cotton gauze as
wound dressing, Fibers and Polymers 20 (2019) 922-932.
[53] S. Czlonka, A. Strakowska, K. Strzelec, A. Kairyte, A. Kremensas, Bio-Based
Polyurethane Composite Foams with Improved Mechanical, Thermal, and
Antibacterial Properties, Materials (Basel) 13(5) (2020).
[54] X. Zhao, Y. Liang, B. Guo, Z. Yin, D. Zhu, Y. Han, Injectable dry cryogels
with excellent blood-sucking expansion and blood clotting to cease hemorrhage
for lethal deep-wounds, coagulopathy and tissue regeneration, Chemical
Engineering Journal 403 (2021).
[55] A. Gupta, R. Wagman, A. Kuwadekar, M. Scoppetuolo, M. Dardik, F. Smith,
Use of immunotherapy and radiation treatment in the management of metastatic
melanoma with rhabdomyosarcomatous differentiation, Advances in Radiation
Oncology 5(1) (2020) 134-139.
[56] S.Y. Wang, H. Kim, G. Kwak, H.Y. Yoon, S.D. Jo, J.E. Lee, D. Cho, I.C. Kwon,
S.H. Kim, Development of biocompatible HA hydrogels embedded with a new
synthetic peptide promoting cellular migration for advanced wound care
management, Advanced science 5(11) (2018) 1800852.
[57] L. Deng, C. Du, P. Song, T. Chen, S. Rui, D. Armstrong, Molecular
mechanisms of dietary bioactive compounds in redox balance and metabolic
disorders, Oxid Med Cell Longev 2021 (2021) 1-11.
[58] S. Haycocks, P. Chadwick, K.F. Cutting, Collagen matrix wound dressings
and the treatment of DFUs, J Wound Care 22(7) (2013) 369-70, 372-5.
[59] J. Lei, P. Chen, Y. Li, X. Wang, S. Tang, Collagen hydrogel dressing for wound
healing
and angiogenesis in diabetic rat models, Int J Clin Exp Med 10.12 (2017) 16319-
16327.
[60] C. Intini, L. Elviri, J. Cabral, S. Mros, C. Bergonzi, A. Bianchera, L. Flammini,
P. Govoni, E. Barocelli, R. Bettini, 3D-printed chitosan-based scaffolds: An in
vitro study of human skin cell growth and an in-vivo wound healing evaluation in
experimental diabetes in rats, Carbohydrate polymers 199 (2018) 593-602.
[61] P. Thangavel, B. Ramachandran, S. Chakraborty, R. Kannan, S. Lonchin, V.
Muthuvijayan, Accelerated Healing of Diabetic Wounds Treated with L-Glutamic
acid Loaded Hydrogels Through Enhanced Collagen Deposition and Angiogenesis:
An In Vivo Study, Sci Rep 7(1) (2017) 10701.
[62] J. Sun, H. Tan, Alginate-Based Biomaterials for Regenerative Medicine
Applications, Materials (Basel) 6(4) (2013) 1285-1309.
[63] A. Tellechea, E.A. Silva, J. Min, E.C. Leal, M.E. Auster, L. Pradhan-Nabzdyk,
W. Shih, D.J. Mooney, A. Veves, Alginate and DNA Gels Are Suitable Delivery
Systems for Diabetic Wound Healing, Int J Low Extrem Wounds 14(2) (2015) 146-
53.
[64] S. Sokic, M. Christenson, J. Larson, G. Papavasiliou, In situ generation of
cell-laden porous MMP-sensitive PEGDA hydrogels by gelatin leaching,
Macromol Biosci 14(5) (2014) 731-9.
[65] G. Chen, L. He, P. Zhang, J. Zhang, X. Mei, D. Wang, Y. Zhang, X. Ren, Z.
Chen, Encapsulation of green tea polyphenol nanospheres in PVA/alginate
hydrogel for promoting wound healing of diabetic rats by regulating PI3K/AKT
pathway, Mater Sci Eng C Mater Biol Appl 110 (2020) 110686.
[66] J.J. He, C. McCarthy, G. Camci-Unal, Development of Hydrogel‐Based
Sprayable Wound Dressings for Second‐and Third‐Degree Burns, Advanced
NanoBiomed Research 1(6) (2021) 2100004.
[67] J.L. Daristotle, L.W. Lau, M. Erdi, J. Hunter, A. Djoum Jr, P. Srinivasan, X.
Wu, M. Basu, O.B. Ayyub, A.D. Sandler, Sprayable and biodegradable,
intrinsically adhesive wound dressing with antimicrobial properties,
Bioengineering & translational medicine 5(1) (2020) e10149.
[68] N. Annabi, D. Rana, E.S. Sani, R. Portillo-Lara, J.L. Gifford, M.M. Fares,
S.M. Mithieux, A.S. Weiss, Engineering a sprayable and elastic hydrogel adhesive
with antimicrobial properties for wound healing, Biomaterials 139 (2017) 229-243.
[69] D. Liu, Y. Liao, E.J. Cornel, M. Lv, T. Wu, X. Zhang, L. Fan, M. Sun, Y. Zhu,
Z. Fan, Polymersome wound dressing spray capable of bacterial inhibition and
H2S generation for complete diabetic wound healing, Chemistry of Materials
33(20) (2021) 7972-7985.
[70] J. Sonamuthu, Y. Cai, H. Liu, M.S.M. Kasim, V.R. Vasanthakumar, B. Pandi,
H. Wang, J. Yao, MMP-9 responsive dipeptide-tempted natural protein hydrogelbased
wound dressings for accelerated healing action of infected diabetic wound,
International journal of biological macromolecules 153 (2020) 1058-1069.
[71] V. Kanikireddy, K. Varaprasad, T. Jayaramudu, C. Karthikeyan, R. Sadiku,
Carboxymethyl cellulose-based materials for infection control and wound healing:
A review, International Journal of Biological Macromolecules 164 (2020) 963-975.
[72] L. Vinklárková, R. Masteiková, G. Foltýnová, J. Muselík, S. Pavloková, J.
Bernatonienė, D. Vetchý, Film wound dressing with local anesthetic based on
insoluble carboxymethycellulose matrix, Journal of Applied Biomedicine 15(4)
(2017) 313-320.
[73] P.A. Simmons, J.G. Vehige, Investigating the potential benefits of a new
artificial tear formulation combining two polymers, Clin Ophthalmol 11 (2017)
1637-1642.
[74] J.-S. Park, S.-J. An, S.-I. Jeong, H.-J. Gwon, Y.-M. Lim, Y.-C. Nho, Chestnut
honey impregnated carboxymethyl cellulose hydrogel for diabetic ulcer healing,
Polymers 9(7) (2017) 248.
[75] S. Awadallah, Protein antioxidants in thalassemia, Advances in Clinical
Chemistry 60 (2013) 85-128.
[76] M. Marí, E. de Gregorio, C. de Dios, V. Roca-Agujetas, B. Cucarull, A.
Tutusaus, A. Morales, A. Colell, Mitochondrial glutathione: Recent insights and
role in disease, Antioxidants 9(10) (2020) 909.
[77] A.A. Zahid, R. Ahmed, S. Raza Ur Rehman, R. Augustine, M. Tariq, A. Hasan,
Nitric oxide releasing chitosan-poly (vinyl alcohol) hydrogel promotes
angiogenesis in chick embryo model, Int J Biol Macromol 136 (2019) 901-910.
[78] S. Kumar, R.K. Singh, T. Bhardwaj, Therapeutic role of nitric oxide as
emerging molecule, Biomedicine & Pharmacotherapy 85 (2017) 182-201.
[79] R. Ahmed, R. Augustine, M. Chaudhry, U.A. Akhtar, A.A. Zahid, M. Tariq,
M. Falahati, I.S. Ahmad, A. Hasan, Nitric oxide-releasing biomaterials for
promoting wound healing in impaired diabetic wounds: State of the art and recent
trends, Biomedicine & Pharmacotherapy 149 (2022) 112707.
[80] Y. Zhou, C. Gaucher, I. Fries, M.-A. Hobekkaya, C. Martin, C. Leonard, F.
Deschamps, A. Sapin-Minet, M. Parent, Challenging development of storable
particles for oral delivery of a physiological nitric oxide donor, Nitric Oxide 104
(2020) 1-10.
[81] K.-D. Kröncke, C.V. Suschek, Adulterated effects of nitric oxide–generating
donors, Journal of investigative dermatology 128(2) (2008) 258-260.
[82] N. Hasan, J. Lee, D. Kwak, H. Kim, A. Saparbayeva, H.-J. Ahn, I.-S. Yoon,
M.-S. Kim, Y. Jung, J.-W. Yoo, Diethylenetriamine/NONOate-doped alginate
hydrogel with sustained nitric oxide release and minimal toxicity to accelerate
healing of MRSA-infected wounds, Carbohydrate Polymers 270 (2021) 118387.
[83] N.L. Hudson, NIOSH skin notation (SK) profile: diethylenetriamine (DETA),
(2020).
[84] Y. Qian, R. Kumar, M.K. Chug, H. Massoumi, E.J. Brisbois, Therapeutic
delivery of nitric oxide utilizing saccharide-based materials, ACS applied
materials & interfaces 13(44) (2021) 52250-52273.
[85] M.J. Malone‐Povolny, S.E. Maloney, M.H. Schoenfisch, Nitric oxide therapy
for diabetic wound healing, Advanced healthcare materials 8(12) (2019) 1801210.
[86] A.B. Seabra, M.G. De Oliveira, Poly (vinyl alcohol) and poly (vinyl
pyrrolidone) blended films for local nitric oxide release, Biomaterials 25(17) (2004)
3773-3782.
[87] A. Seabra, A. Fitzpatrick, J. Paul, M. De Oliveira, R. Weller, Topically applied
S‐nitrosothiol‐containing hydrogels as experimental and pharmacological nitric
oxide donors in human skin, British Journal of Dermatology 151(5) (2004) 977-
983.
[88] J. Llop, V. Gómez-Vallejo, M. Bosque, G. Quincoces, I. Peñuelas, Synthesis
of S-[13N] nitrosoglutathione (13N-GSNO) as a new potential PET imaging agent,
Applied Radiation and Isotopes 67(1) (2009) 95-99.
[89] M.A. Mohamed, J. Jaafar, A. Ismail, M. Othman, M. Rahman, Fourier
transform infrared (FTIR) spectroscopy, Membrane characterization, Elsevier2017,
pp. 3-29.
[90] A.A. Ismail, F.R. van de Voort, J. Sedman, Fourier transform infrared
spectroscopy: principles and applications, Techniques and instrumentation in
analytical chemistry, Elsevier1997, pp. 93-139.
[91] N. Zientek, K. Meyer, S. Kern, M. Maiwald, Quantitative online NMR
spectroscopy in a nutshell, Chemie Ingenieur Technik 88(6) (2016) 698-709.
[92] G.T. Hermanson, Bioconjugate techniques, Academic press2013.
[93] F. Xiao, T. Xu, B. Lu, R. Liu, Guidelines for antioxidant assays for food
components, Food Frontiers 1(1) (2020) 60-69.
[94] K. Sirivibulkovit, S. Nouanthavong, Y. Sameenoi, based DPPH assay for
antioxidant activity analysis, Analytical sciences 34(7) (2018) 795-800.
[95] H. Li, L. Li, Y. Chi, Q. Tian, T. Zhou, C. Han, Y. Zhu, Y. Zhou, Development
of a standardized Gram stain procedure for bacteria and inflammatory cells using
an automated staining instrument, MicrobiologyOpen 9(9) (2020) e1099.
[96] L. Váradi, M. Breedon, F.F. Chen, A. Trinchi, I.S. Cole, G. Wei, Evaluation
of novel Griess-reagent candidates for nitrite sensing in aqueous media identified
via molecular fingerprint searching, RSC advances 9(7) (2019) 3994-4000.
[97] K. Akhtar, S.A. Khan, S.B. Khan, A.M. Asiri, Scanning electron microscopy:
Principle and applications in nanomaterials characterization, Handbook of
materials characterization (2018) 113-145.
[98] G. Gethin, J.D. Ivory, D. Sezgin, H. Muller, G. O'Connor, A. Vellinga, What
is the “normal” wound bed temperature? A scoping review and new hypothesis,
Wound Repair and Regeneration 29(5) (2021) 843-847.
[99] Y. Zhang, M. Huo, J. Zhou, A. Zou, W. Li, C. Yao, S. Xie, DDSolver: an add132
in program for modeling and comparison of drug dissolution profiles, The AAPS
journal 12 (2010) 263-271.
[100] M. Dewan, B. Bhowmick, G. Sarkar, D. Rana, M.K. Bain, M. Bhowmik, D.
Chattopadhyay, Effect of methyl cellulose on gelation behavior and drug release
from poloxamer based ophthalmic formulations, International journal of biological
macromolecules 72 (2015) 706-710.
[101] M.I.H. Mondal, M.S. Yeasmin, M.S. Rahman, Preparation of food grade
carboxymethyl cellulose from corn husk agrowaste, International Journal of
Biological Macromolecules 79 (2015) 144-150.
[102] A. Antosova, Z. Gazova, D. Fedunova, E. Valusova, E. Bystrenova, F. Valle,
Z. Daxnerova, F. Biscarini, M. Antalik, Anti-amyloidogenic activity of
glutathione-covered gold nanoparticles, Materials Science and Engineering: C
32(8) (2012) 2529-2535.
[103] Ş. Saçmacı, M. Saçmacı, C. Kök, Grafting of glutathione to magnetic
graphene oxide and application for the determination of As (III)/(V) in food
samples via a zeta potential analyzer, New Journal of Chemistry 42(7) (2018)
5345-5355.
[104] M. Yáñez-S, B. Matsuhiro, S. Maldonado, R. González, J. Luengo, O. Uyarte,
D. Serafine, S. Moya, J. Romero, R. Torres, Carboxymethylcellulose from
bleached organosolv fibers of Eucalyptus nitens: synthesis and physicochemical
characterization, Cellulose 25 (2018) 2901-2914.
[105] R.J. Hopkinson, P.S. Barlow, C.J. Schofield, T.D. Claridge, Studies on the
reaction of glutathione and formaldehyde using NMR, Organic & biomolecular
chemistry 8(21) (2010) 4915-4920.
[106] J.D. Roberts, M.C. Caserio, Basic principles of organic chemistry, WA
Benjamin, Inc.1977.
[107] N.V. Dubashynskaya, A.N. Bokatyi, A.S. Golovkin, I.V. Kudryavtsev, M.K.
Serebryakova, A.S. Trulioff, Y.A. Dubrovskii, Y.A. Skorik, Synthesis and
characterization of novel succinyl chitosan-dexamethasone conjugates for
potential intravitreal dexamethasone delivery, International Journal of Molecular
Sciences 22(20) (2021) 10960.
[108] P. Diaz-Vivancos, A. de Simone, G. Kiddle, C.H. Foyer, Glutathione–linking
cell proliferation to oxidative stress, Free Radical Biology and Medicine 89 (2015)
1154-1164.
[109] S. Shah, M. Socha, C. Sejil, S. Gibaud, Spray-dried microparticles of
glutathione and S-nitrosoglutathione based on Eudragit® FS 30D polymer,
Annales pharmaceutiques francaises, Elsevier, 2017, pp. 95-104.
[110] P.V. Toledo, D.P. Limeira, N.C. Siqueira, D.F. Petri, Carboxymethyl
cellulose/poly (acrylic acid) interpenetrating polymer network hydrogels as
multifunctional adsorbents, Cellulose 26 (2019) 597-615.
[111] Y. Chen, G. Cui, N. Dan, Y. Huang, Z. Bai, C. Yang, W. Dan, Preparation and
characterization of dopamine–sodium carboxymethyl cellulose hydrogel, SN
Applied Sciences 1 (2019) 1-10.
[112] S. Feng, F. Liu, Y. Guo, M. Ye, J. He, H. Zhou, L. Liu, L. Cai, Y. Zhang, R.
Li, Exploring the role of chitosan in affecting the adhesive, rheological and
antimicrobial properties of carboxymethyl cellulose composite hydrogels,
International Journal of Biological Macromolecules 190 (2021) 554-563.
[113] A. Sohrabi, P.á. Shaibani, H. Etayash, K. Kaur, T. Thundat, Sustained drug
release and antibacterial activity of ampicillin incorporated poly (methyl
methacrylate)–nylon6 core/shell nanofibers, Polymer 54(11) (2013) 2699-2705.
[114] P.S. Chan, Q. Li, B. Zhang, K.K. To, S.S. Leung, In vivo biocompatibility
and efficacy of dexamethasone-loaded PLGA-PEG-PLGA thermogel in an alkaliburn
induced corneal neovascularization disease model, European Journal of
Pharmaceutics and Biopharmaceutics 155 (2020) 190-198.
[115] M. Vigata, C. Meinert, D.W. Hutmacher, N. Bock, Hydrogels as drug
delivery systems: A review of current characterization and evaluation techniques,
Pharmaceutics 12(12) (2020) 1188.
[116] C. Napoli, G. Paolisso, A. Casamassimi, M. Al-Omran, M. Barbieri, L.
Sommese, T. Infante, L.J. Ignarro, Effects of nitric oxide on cell proliferation:
novel insights, Journal of the American College of Cardiology 62(2) (2013) 89-95.

無法下載圖示 全文公開日期 2033/08/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE