簡易檢索 / 詳目顯示

研究生: 謝公仁
Kuag-jen Hsieh
論文名稱: 填充材料對散熱複合材料影響之研究
Research of Filler Effect on Thermal Composite Materials
指導教授: 林舜天
Shun-tian Lin
口試委員: 林寬泓
Kuan-Hong Lin
蔡顯榮
HSIEN-LUNG TSAI
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 57
中文關鍵詞: 散熱粒徑鋁粉填充材料
外文關鍵詞: particle size, aluminum, filler, thermal material
相關次數: 點閱:433下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來隨著高科技產業的快速發展,電子元件趨向體積小與高功率,所需的效能愈來愈高,相對來說熱能的產生隨之增加。若在運作時熱能無法適時排除,將會使得電子元件的效能降低,甚至造成損壞,因此有各式各樣的散熱材料便針對此問題進行研究開發,期望達到更好的散熱效果。有機及無機複合材料是目前廣泛使用於電子元件導熱的高性能散熱材料,期望藉由有機材料的塗佈性、加工性,配合無機材料的良好散熱特性,達到解決電子元件散熱的需求。
目前市面上常見到各式各樣的散熱膏,高導熱系統的散熱膏是以日本、美國為主,台灣生產多半是低導熱系統的散熱膏。有鑑於此,本研究希望藉由研究不同填充物對複合材料熱傳導性質的影響,找出最適合的填充材料,另外改變不同的成份與基底的組成,找出最佳的成份與比例。藉由利用水冷式熱傳導量測儀及散熱模組的實驗量測加以驗證,並利用TGA實驗了解工作溫度範圍,以避免散熱膏有乾涸現象產生。利用上述的方式,本研究得到最佳配方為粒徑44µm的鋁粉;其與矽膠的組成比為35:65為最佳的配方,其工作溫度可在120℃以下而不會有重量損失及乾涸的現象。


For the development on high-tech in recent years, the electric elements lead to smaller volume and higher power. However, the heat is increasing as the performance raising. If we cannot eliminate the influence of generated heat, it will damage the element or reduce the performance at least. So there are so many kinds of heat sink material which is expected to achieve better purpose and solve the serious and urgent problem. For the moment, composite material of organic and inorganic ones is widely used on the heat sink of electric elements. It is anticipated to meet the demand through the ability on spread and finish of organic materials. And the better thermal conductivity of inorganic materials is as important as the organic ones at the same time.
In the thermal market, there are many kinds of grease with high conductivity from Japan and U.S. On the other hand, most of the grease which made in Taiwan are below those kinds mentioned before. To find out the best composition, we discussed the influence of thermal conductivity through different fillers and the proportion between the base and filler. Then we get the proportion of 35% aluminum in 44um and 65% silicon. And it can keep working under 120℃. Furthermore, we do some experiments like water-cooling thermal conductivity measurement, real thermal module measurement and thermal gravimetric analysis (TGA) to examine the result.

中文摘要………………………………………………………………………………...1 英文摘要………………………………………………………………………………...2 誌 謝………………………………………………………………………………...3 目 錄………………………………………………………………………………...4 圖 目 錄………………………………………………………………………………...6 表 目 錄………………………………………………………………………………...7 第一章 緒論……………………………………………………………………...8 1-1前言……………………………………………………………………………8 1-2 散熱介面材料……………………………………………………………….10 1-3 散熱材料熱阻原理………………………………………………………….12 1-4 常見散熱材料種類及特性………………………………………………….16 1-4-1 熱傳導化合物……………………………………………………...19 1-4-2 相變化材料………………………………………………………...19 1-4-3 導熱凝膠…………………………………………………………...20 1-4-4 導熱黏膠…………………………………………………………...20 1-5 影響散熱膏特性因素……………………………………………………….22 第二章 實驗方法………………………………………………………………...25 2-1 實驗材料…………………………………………………………………….26 2-1-1 填充材料選擇……………………………………………………….26 2-1-2 矽膠基底選擇……………………………………………………….26 2-2 實驗方法…………………………………………………………………….27 2-2-1 水冷機台熱傳導測試……………………………………………….27 2-2-2 上機測試方式(散熱模組)………………………………………….29 2-2-3 Intel測試方法……………………………………………………30 2-2-4 電阻率量測(Electrical Resistivity)………………………… 33 2-2-5 TGA測試…………………………………………………………….. 33 第三章 結果與討論………………………………………………………………… 34 3.1 材料的選用………………………………………………………………… 34 3.2 不同的鋁粉填充量對熱傳導的影響……………………………………… 37 3.3 不同的鋁粉粒徑對熱傳導的影響………………………………………… 38 3.4散熱膏對熱傳導的影響……………………………………………………. 39 3.4.1鋁擠型散熱模組測試 ……………………………………………. 39 3.4.2 銅鰭片型散熱模組測試 ………………………………………….. 40 3.4.3 水冷機台測試 ……………………………………………………...41 3.5 Intel 測試方法…………………………………………………………….43 3.6 TGA 測試……………………………………………………………….........45 3.7 Pump Out 及Dry Out 測試.........................................................................47 第四章 結論………………………………………………………………………….48 參考文獻................…………………………………………………………………….49 附錄…………………………………………………………………………………….51

【1】 杜祥光,”氮化鋁填充高導熱複合材料之開發研究”,成功大學碩士論文,民93年畢業。
【2】 Dr. Miksa deSorgo, Chomerics Division, Parker Hannifin Corporation “Thermal interface material”. http://www.electronics-cooling.com/Resources/EC_Articles/SEP96/sep96_01.htm
【3】 Campbel,R.C.,Smith,S.E.,and Dietz,R.L., “Measurements of Adhesive Bondline Effective Thermal Conductivity and Thermal Conductance Using the Laser Flash Method”15th IEEE SEMI-THERM Symposium,San Diego,CA,1999.
【4】 Hasselman, D.P.H., Donaldson,K.Y., Barlow,F.D., Elshabini, A.A., Schiroky, G.H., Yaskoff,J.P.,and Dietz,R.L., “Interface Thermal Resistance and Temperature Dependence of Three adhesives for Electronic Packaging,”IEEE Transactions on Components and Packaging Technologies,Vol.24,No.3,2000.
【5】 Weills,N.D ., and Ryder , E. A. , “Thermal Resistance Measurement s of Joints Formed Between Stationary Metal Surface ,”Trans. Of ASME , pp.259-267, APRIL,1949
【6】 Fenech , H., and Rohsenow , W.M., “Prediction of Thermal Conductance of Metallic Surface in Contact , ”Journal of Heat Transfer , pp.15-24 , Feb, 1963.
【7】 Clasuing , A . M ., and Chao, B. T ., “Thermal Contact Resistance in a Vacuum Environment ,”Journal of Heat Transfer , pp. 234-251 May , 1965.
【8】 Timoshenko , S.P., and Goodier, J.N., “ Theory of Elasticity , ”2nd edition , Mcgraw-Hill, New York,1951.
【9】 Rogers , G.F.C, “Heat Transfer at the Interface of Dissimilar Metals ”Int.J. Heat Mass Transfer , Vol.2, pp.150-154, 1961.
【10】 Jones , A. M. , O’Callaghan , P.W., and Probert , S.D., “Thermal Rectification due to Distorsion Induced by Heat Fluxes Across Contacts between Smooth Surface ”Journal of Mechanical Engineering Science , Vol 17, No.5, pp.252-261, 1975.
【11】 黃振東,”熱界面材料之特性與應用”,工業材料,4月。
【12】 http://www.electronics-cooling.com/
【13】 http://www.intel.com/technology/itj/2005/volume09issue01/art06_interface_materials/p03_thermal_materials.htm
【14】 Chiu, C-P., Chandran, B., Mello, M., and Ken, K., "An Accelerated Reliability Test Method to Predict Thermal Grease Pump-Out in Flip-Chip Applications," Proceedings of 51th Electronic Components & Technology Conference, Orlando, FL, May/June 2001, pp. 91-97.
【15】 Prasher, R. and Matayabas, J., "Thermal Contact Resistance of Cured Gel Polymeric Thermal Interface Material," Submitted to IEEE Transactions on Components and Packaging Technology, 2003.
【16】 Chiu, C-P., Solbreken, G., LeBonheur, V., and Xu Y., "Application of Phase Change Materials in Pentium III and Pentium III Xeon Processor Cartridges," Proceedings of the International Symposium and Exhibition on Advanced Packaging Materials Processes, Properties and Interfaces, March, 2000, pp. 265-270.
【17】 Chiu Chia-Pin, Viswanath Ram, and Solbreken Gary, "Pentium II Processor Packaging-Thermal Management of SRAM's in SEC Cartridge," Proceedings of SPIE – The International Society for Optical Engineering, V 3582, November 1998, pp. 833-838.
【18】 Prasher, R., Shipley, J., Prstic, S., Koning, P., and Wang, J-L, "Thermal Resistance of Particle Laden Polymeric Thermal Interface Materials," Journal of Heat Transfer, Volume 125, December 2003.
【19】Ram Viswanath, Vijay Wakharkar, Abhay Watwe,Vassou
Lebonheur, ”Thermal Performance Challenges from Silicon to Systems ”, Intel Technology Journal Q3, 2000.
【20】http://www.microsi.com/packaging/thermal_grease.htm
【21】http://www.thermagon.com/pdf/rthvspressure.pdf

無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2010/09/01 (國家圖書館:臺灣博碩士論文系統)
QR CODE