簡易檢索 / 詳目顯示

研究生: Bikila Nagasa Olana
Bikila Nagasa Olana
論文名稱: 鋰金屬與銅箔負極表面的介面物種生成研究
Investigation of Formation of Solid electrolyte interphase over Lithium and Copper metal anode
指導教授: 林昇佃
Shawn D. Lin
黃炳照
Bing-Joe Hwang
口試委員: She-Huang Wu
She-Huang Wu
Chun-Chen Yang
Chun-Chen Yang
Jyh-Chiang Jiang
Jyh-Chiang Jiang
Heng-Liang Wu
Heng-Liang Wu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 150
中文關鍵詞: Diffuse Reflectance Infrared Fourier-Transformed SpectroscopyCyclic VoltammetryEnergy- Dispersive X-ray SpectroscopyOpen Circuit PotentialScanning Electron MicroscopyX-ray photoelectron spectroscopyZeolite imidazolate framework
外文關鍵詞: Diffuse Reflectance Infrared Fourier-Transformed Spectroscopy, Cyclic Voltammetry, Energy- Dispersive X-ray Spectroscopy, Open Circuit Potential, Scanning Electron Microscopy, X-ray photoelectron spectroscopy, Zeolite imidazolate framework
相關次數: 點閱:433下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在鋰金屬電池 (LMB)的鋰金屬陽極和無陽極 LMB (AFLMB) 的銅箔陽極表面,鋰枝晶和死鋰的形成是導致電池效能低落的主因。通過介面反應調控或施加人工塗層可能形成所謂的良好 SEI(固體電解質介面),可能會抑制電解質和電極之間的不良反應以及枝狀鋰的形成。本論文主要目的為研究在 OCV(開路電壓)下和初始迴圈期間,Li 和 Cu 金屬電極與電解質接觸時的表面物種形成現象,主要使用技術為原位 DRIFTS(漫反射紅外傅利葉變換光譜)分析。
第一項工作檢測電解質為LiTFSI (LiN(SO2CF3)2)溶在DME(1,2-二甲氧基乙烷)和 DOL(1,3-二氧戊環),並分析 LiNO3 (LN) 添加劑的影響。 OCV 下的 DRIFTS 光譜顯示Li 和 Cu 負極表面上的 DME 和 DOL是穩定的,而 LiTFSI 在 Li 負極上發生化學分解生成LiSO2CF3 和 Li2NSO2CF3 物種,但在 Cu 負極上是穩定的, LN則 在 Li 和 Cu 陽極上化學分解成 LiNO2,以及可能的伴生物質 Li2O 。在 LSV(線性掃描伏安法),這些表面物質以及 DOL 和 DME 都會發生電化學還原,形成 ROLi(CH3CH2OCH2Li/CH3OCH2CH2OLi 和 CH3OLi,分別來自 DOL 和 DME)、Li3N(來自 TFSI- 和 LiNO3)、LiF 和 Li2SO2(來自TFSI-) 和 Li2O(來自 LiNO3)。
第二項工作氫氟醚 (TTE) 和環丁碸 (TMS) 溶解 LiTFSI的電解液(標記為 LiTT),並分析 PS(多硫化鋰)添加劑的影響。 DRIFTS 分析顯示當TTE與鋰金屬接觸時,會分解生成 LiOCF2CF2H、LiCH2CFCFH 和 LiF 物質,TMS 與鋰金屬間反應形成 Li-C4H8SO2-Li,TFSI 離子則分解生成 LiSO2CF3 和 Li2SO2CF3 物質,這些OCV發生的反應,在浸沒測試和 XPS 分析中獲得佐證,並有證據顯示浸入時間較長時的碎片分解程度增加。 PS添加劑可以通過與鋰金屬優先反應形成Li2S和短鏈PS,可能鈍化表面抑制TTE、TMS和LiTFSI的分解。在 LSV 掃描時,LiSO2CF3 和 Li2NSO2CF3 物種可以還原為 LiCF3、Li2NO2Li、Li2SO2、LiF 和 Li3N。在帶有濺射金的Au/Cu陽極上,電解質的分解相較於 Li 金屬為低,在 Au/Cu 上形成的物質包括 LiSO2CF3 和 Li2NSO2CF3(來自 LiTFSI)、Li-C4H8-Li(來自 TMS)和LiOCF2CF2H 和 LiCH2CFCFH(來自 TTE)。
第三項工作中使用 LiTFSI/DOL-DME-LN 電解質檢查含有 ZIF8 (Zn(2-methylimidazolate)2) 覆層的銅箔陽極,並比較ZIF8中含有聚苯乙烯磺酸鹽 (PSS)的影響。具有Cu-ZIF8 和Cu-ZIF8-PSS覆層的陽極的可以提高電池長迴圈循環使用的穩定性,但初始庫侖效率相對裸Cu 陽極的電池為低。 DRIFTS 光譜顯示 SEI 物質仍然可以由電解質成分的還原反應而形成,SEM 和 EDX 分析顯示Cu表面可能沒有被 ZIF8 層完全覆蓋,這可能導致 SEI 的形成,並可能導致 ZIF8 覆蓋陽極之間的再現性有些不一致。
本研究的第四部份分析銅箔陽極上雙添加劑氟代碳酸亞乙酯 (FEC) 和二氟磷酸鋰 (LiPO2F2)對 SEI生成的協同作用,電解質為溶於碳酸亞乙酯 (EC) 和碳酸二乙酯 (DEC)的 LiPF6 。電解質成分在銅箔陽極上電化學還原反應,按照 LiPO2F2 > FEC > EC > DEC 的電位順序進行, LiPF6 在接觸 Cu 陽極時,有LixPFy生成 ,並在約 1.44 V時有還原反應。LiPF6 的還原物質會導致烷基氟化磷 (RPF) 的形成,不過這個反應會受到 FEC 和/或 LiPO2F2 的存在所抑制。FEC在第一個循環中還原並形成聚 (FEC),而 EC 被電化學還原為 (CH2OCO2Li)2 和 Li2CO3,DEC被還原為 CH3CH2OCO2Li 和 Li2CO3。當僅使用 LiPO2F2 添加劑時,可以在 CV 中觀察到 LiPO2F2 的氧化還原現象,其中 LixPOy 作為可能的還原產物,使用LiPO2F2 可以減少Li2CO3 的形成,表明抑制了 EC 和 DEC 的還原。同時使用FEC 添加劑則可以抑制 LiPO2F2 的氧化還原作用,並可能通過 FEC 在 Cu 上的優先吸附來部分抑制 LiPF6 的分解。透過雙添加劑的電解質,顯示聚(FEC) 和 LixPFy 物種形成對LiPF6、EC 和 DEC 還原反應的抑制所帶來的可能優勢,但仍然無法完全抑制 LiPF6、EC 和 DEC 的還原。


In Lithium metal batteries (LMBs) with lithium metal anode and in anode-free LMBs (AFLMBs) with copper foil anode, formation of lithium dendrite and dead lithium is challenging. Formation of so-called good SEI (solid electrolyte interphase) by either in situ surface reaction or by prior artificial coating can possibly suppress undesired reactions between electrolyte and electrode, and dendritic lithium formation. The goal of this dissertation is to study surface species formation over Li and Cu metal electrodes upon contacting with electrolyte at OCV (open circuit voltage) and during initial cycles, by using in situ DRIFTS (diffuse reflectance infrared Fourier-transformed spectroscopy) analysis as the main technique.
In the first part, the electrolyte of LiTFSI (LiN(SO2CF3)2) in DME (1,2-dimethoxyethane) and DOL (1,3-dioxolane) with and without LiNO3 (LN) additive was examined. The DRIFTS spectra at OCV indicate the DME and DOL bands over Li and Cu anodes are similar and stable, while LiTFSI is chemically decomposed into LiSO2CF3 and Li2NSO2CF3 species over Li anode but it is stable over Cu anode. LN is chemically decomposed over both Li and Cu anodes into LiNO2 with Li2O as the likely accompanying species at OCV. During LSV (linear scan voltammetry) these surface species and also DOL and DME can be electrochemically reduced forming ROLi (CH3CH2OCH2Li/CH3OCH2CH2OLi and CH3OLi, respectively, from DOL and DME), Li3N (from TFSI- and LiNO3), LiF and Li2SO2 (from TFSI-), and Li2O (from LiNO3).
In the second part, the electrolyte of LiTFSI in hydrofluoroether (TTE) and sulfolane (TMS), labelled as LiTT, with and without PS (Lithium polysulfide) additive was investigated. DRIFTS analyses indicate that TTE decomposes into LiOCF2CF2H, LiCH2CFCFH and LiF species when in contact with lithium metal, and that TMS reacts with Li metal forming Li-C4H8SO2-Li. TFSI ion decomposition over Li leads to LiSO2CF3 and Li2SO2CF3 species at OCV. The chemical reactivity of Li toward all electrolyte components at OCV is supported by immersion tests and XPS analysis, with evidence of more fragmented species with longer immersion time. The PS additive can suppress the decomposition of TTE, TMS, and LiTFSI via preferential reaction with Li metal forming Li2S and short chain PS that may have passivated the surface. During LSV scanning LiSO2CF3 and Li2NSO2CF3 species can be reduced to LiCF3, Li2NO2Li, Li2SO2, LiF and Li3N. Over Cu anode with sputtered gold (Au/Cu), decomposition of electrolyte is relatively suppressed compared to over Li metal. The observed SEI species formed over Au/Cu include LiSO2CF3 and Li2NSO2CF3, (from LiTFSI), Li-C4H8-Li (from TMS), and LiOCF2CF2H and LiCH2CFCFH (from TTE).
In the third work, Cu anode coated with ZIF8 (Zn(2-methylimidazolate)2) layer with and without polystyrene sulfonates (PSS) was examined using LiTFSI/DOL-DME-LN electrolyte. The cell with Cu-ZIF8 and Cu-ZIF8-PSS anodes can improve long cycling stability though the initial coulombic efficiency is relatively low compared to cell with bare Cu anode. DRIFTS spectra indicate that SEI species still can be formed from reduced electrolyte components. SEM and EDX analyses indicate that Cu metal may not be completely covered by ZIF8 layer, which may contribute to SEI formation and somewhat inconsistent reproducibility among ZIF8-covered anodes.
The fourth work explores the possible synergetic effect of fluoroethylene carbonate (FEC) and lithium difluorophosphate (LiPO2F2) dual additives in SEI formation over Cu anode using LiPF6 in ethylene carbonate (EC) and diethyl carbonate (DEC). The electrolyte solvents and additives can be electrochemically reduced over Cu anode following a potential sequence LiPO2F2 > FEC > EC > DEC. LiPF6 interacts with Cu anode upon contact resulting in LixPFy which can be reduced at ~1.44 V. Without any additive, reduced species from LiPF6 can lead to formation of alkyl phosphorous fluorides (RPF) and this can be suppressed by the presence of FEC and/or LiPO2F2. When with only LiPO2F2 additive, redox of LiPO2F2 can be observed in CV with LixPOy as the possible reduced product. In addition, Li2CO3 formation from EC and DEC reduction was relatively suppressed by the presence of LiPO2F2. The simultaneous presence of FEC additive can suppress the redox of LiPO2F2 and partly the decomposition of LiPF6 likely via preferential adsorption of FEC on Cu. The electrolyte with dual additives demonstrates a possible advantage from poly(FEC) and LixPOy species formation, resulted in suppressed reduction though not completely of LiPF6, EC and DEC.

Abstract i Acknowledgement v List of Figures x List of Scheme xvii Chapter 1: Introduction 1 1.1. Lithium Metal Anode 1 1.2. Solid Electrolyte Interphase Formation 2 1.3. Modifying Copper anode with artificial SEI. 7 1.4. Techniques of SEI analysis 7 1.5. Motivation and Aim of the current work. 11 Chapter 2: Experimental methods 13 2.1 Electrolyte preparation 13 2.1.1 Lithium bis(trifluoroethane)sulfonimide in DME: DOL 13 2.1.2 Lithium bis(trifluoroethane)sulfonimide in TMS: TTE 13 2.1.3 LiPF6 in ethylene carbonate (EC): diethyl carbonate (DEC) 14 2.2 Electrode preparation 14 2.3 Electrochemical Measurement 15 2.3.1 CV, EIS and Charge Discharging Experiment 15 2.4 FTIR and DRIFTS Experiment 15 2.5. XPS, Raman, SEM image and EDX analysis 16 Chapter 3: In Situ DRIFTS study of solid electrolyte interphase formation on Lithium metal anode from ether based LiTFSI with and without Lithium nitrate and fluoropyridine additives. 17 3.1 Motivation 17 3.1 Results and discussion 18 3.1.1 Electrochemical performances of Li||Li and Cu||Li cells 18 3.1.2 Electrochemical impedance spectroscopy Measurement 20 3.1.3 Cyclic voltammetry Measurement 22 3.1.4 In situ DRIFTS over Li and Cu electrodes at OCV. 24 3.1.5 In Situ DRIFTS difference spectra over Li metal anode during electrochemical cycling …………………………………………………………………………………………28 3.1.6 In Situ DRIFTS difference spectra over Cu anode during electrochemical cycling …………………………………………………………………………………………33 3.1.7 X-ray photoelectron spectroscopy 37 3.1.8 Scanning electron microscope images of electrodes after cycling 40 3.4. Summary 44 Chapter 4: Chemical reaction between LiTFSI in TMS-TTE electrolyte with Li metal anode 45 4.1 Motivation 45 4.2 Results and Discussion 46 4.2.1 FTIR analysis of Liquid Samples 46 4.2.2 DRIFTS analysis of TMS and TTE solvents over Li 48 4.2.3 DRIFTS analysis of LiTT and LiTT-PS electrolyte over Li 51 4.2.4 X-ray photoelectron spectroscopy analyses 56 4.2.5 FTIR/DRIFTS difference spectra 60 4.2.6 Comparison of in situ DRIFTS spectra over Li and Au/Cu electrodes at OCV 63 4.2.7 Cyclic voltammetry Measurement 65 4.2.8 EIS Measurement 68 4.2.9 In situ DRIFTS difference spectra during electrochemical cycling 69 4.2.10 Raman spectra analysis of electrode after cycling 75 4.2.11 X-ray photoelectron spectroscopy results 77 4.3 Summary 81 Chapter 5: Improving long cycling performance of copper anode using ZIF8 artificial film. 82 5.1 Motivation 82 5.2 Results and discussions 83 5.2.1 DRIFTS characterization of Cu anode coated with ZIF8 and ZIF8-PSS 83 5.2.2 SEM, cross-sectional FIB image and EDX elemental mapping of Cu-ZIF8 and Cu-ZIF8-PSS electrodes. 84 5.2.3 Cyclic Voltammetry Measurement 86 5.2.4 In situ DRIFTS spectrum over Cu-ZiF8 and Cu-ZiF8-PSS anode using LiTFSI in DME/DOL with LiNO3 electrolyte 88 5.2.5 Electrochemical Performance Measurement. 92 5.2.6 EIS Measurement 95 5.2.7 Top view SEM, cross-sectional FIB image and EDX/elemental mapping of anode after cycling. 98 5.3 Summary 102 5.4 Comparison of SEI formed over Li and Cu metal anodes 103 Chapter 6: In Situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy Investigation of Fluoroethylene Carbonate and Lithium Difluorophosphate Dual Additives in SEI Formation Over Cu Anode. 105 6.1 Motivation 105 6.2 Results 106 6.2.1 Cyclic voltammetry Measurement 106 6.2.2 In situ DRIFTS at OCV 108 6.2.3 In situ DRIFTS difference spectra using LP47 base electrolyte 111 6.2.4 In situ DRIFTS spectra of LP47 with FEC additive 113 6.2.5 In situ DRIFTS spectra of LP47 with LiPO2F2 additive 115 6.2.6 In situ DRIFTS spectra of LP47 with FEC and LiPO2F2 dual additive 116 6.3 Summary 121 Chapter 7: General conclusion 123 Chapter 8: Recommendation and Future prospective. 126 References 127 Appendices 145

[1] M. Dresselhaus, I. Thomas, Alternative energy technologies, Nature, 414 (2001) 332-337.
[2] J. Van Mierlo, G. Maggetto, Fuel cell or battery: Electric cars are the future, Fuel Cells, 7 (2007) 165-173.
[3] V. Manieniyan, M. Thambidurai, R. Selvakumar, Study on energy crisis and the future of fossil fuels, Proc. SHEE, 10 (2009) 2234-3689.
[4] J.-M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, (2011) 171-179.
[5] J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities, Nature Reviews Materials, 1 (2016) 1-16.
[6] W. Ren, C. Ding, X. Fu, Y. Huang, Advanced gel polymer electrolytes for safe and durable lithium metal batteries: Challenges, strategies, and perspectives, Energy Storage Materials, (2020).
[7] J. Taracson, M. Armand, Issues and challenges facing lithium ion batteries, Nature, 414 (2001) 359-367.
[8] X.-B. Cheng, R. Zhang, C.-Z. Zhao, Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: a review, Chemical reviews, 117 (2017) 10403-10473.
[9] D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries, Nature nanotechnology, 12 (2017) 194.
[10] S. Fu, L.-L. Zuo, P.-S. Zhou, X.-J. Liu, Q. Ma, M.-J. Chen, J. Yue, X. Wu, Q. Deng, Recent Advancements of Functional Gel Polymer Electrolytes for Rechargeable Lithium Metal Batteries, Materials Chemistry Frontiers, (2021).
[11] W. Weng, J. Lin, Y. Du, X. Ge, X. Zhou, J. Bao, Template-free synthesis of metal oxide hollow micro-/nanospheres via Ostwald ripening for lithium-ion batteries, Journal of Materials Chemistry A, 6 (2018) 10168-10175.
[12] C.-P. Yang, Y.-X. Yin, S.-F. Zhang, N.-W. Li, Y.-G. Guo, Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes, Nature communications, 6 (2015) 1-9.
[13] M. Zhu, J. Wu, Y. Wang, M. Song, L. Long, S.H. Siyal, X. Yang, G. Sui, Recent advances in gel polymer electrolyte for high-performance lithium batteries, Journal of energy chemistry, 37 (2019) 126-142.
[14] B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices, Science, 334 (2011) 928-935.
[15] X.-B. Cheng, C. Yan, X. Chen, C. Guan, J.-Q. Huang, H.-J. Peng, R. Zhang, S.-T. Yang, Q. Zhang, Implantable solid electrolyte interphase in lithium-metal batteries, Chem, 2 (2017) 258-270.
[16] W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.-G. Zhang, Lithium metal anodes for rechargeable batteries, Energy & Environmental Science, 7 (2014) 513-537.
[17] F. Wu, Y.-X. Yuan, X.-B. Cheng, Y. Bai, Y. Li, C. Wu, Q. Zhang, Perspectives for restraining harsh lithium dendrite growth: Towards robust lithium metal anodes, Energy Storage Materials, 15 (2018) 148-170.
[18] M. Gao, H. Li, L. Xu, Q. Xue, X. Wang, Y. Bai, C. Wu, Lithium metal batteries for high energy density: fundamental electrochemistry and challenges, Journal of Energy Chemistry, (2020).
[19] Z. Tu, M.J. Zachman, S. Choudhury, S. Wei, L. Ma, Y. Yang, L.F. Kourkoutis, L.A. Archer, Nanoporous hybrid electrolytes for high‐energy batteries based on reactive metal anodes, Advanced Energy Materials, 7 (2017) 1602367.
[20] C. Fang, J. Li, M. Zhang, Y. Zhang, F. Yang, J.Z. Lee, M.-H. Lee, J. Alvarado, M.A. Schroeder, Y. Yang, Quantifying inactive lithium in lithium metal batteries, Nature, 572 (2019) 511-515.
[21] X. Cao, X. Ren, L. Zou, M.H. Engelhard, W. Huang, H. Wang, B.E. Matthews, H. Lee, C. Niu, B.W. Arey, Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization, Nature Energy, 4 (2019) 796-805.
[22] N.W. Li, Y.X. Yin, C.P. Yang, Y.G. Guo, An artificial solid electrolyte interphase layer for stable lithium metal anodes, Advanced materials, 28 (2016) 1853-1858.
[23] D.-H. Liu, Z. Bai, M. Li, A. Yu, D. Luo, W. Liu, L. Yang, J. Lu, K. Amine, Z. Chen, Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives, Chemical Society Reviews, 49 (2020) 5407-5445.
[24] Z. Ju, J. Nai, Y. Wang, T. Liu, J. Zheng, H. Yuan, O. Sheng, C. Jin, W. Zhang, Z. Jin, Biomacromolecules enabled dendrite-free lithium metal battery and its origin revealed by cryo-electron microscopy, Nature communications, 11 (2020) 1-10.
[25] S. Duangdangchote, A. Krittayavathananon, N. Phattharasupakun, N. Joraleechanchai, M. Sawangphruk, Insight into the effect of additives widely used in lithium–sulfur batteries, Chemical Communications, 55 (2019) 13951-13954.
[26] T. Wang, Y. Li, J. Zhang, K. Yan, P. Jaumaux, J. Yang, C. Wang, D. Shanmukaraj, B. Sun, M. Armand, Immunizing lithium metal anodes against dendrite growth using protein molecules to achieve high energy batteries, Nature communications, 11 (2020) 1-9.
[27] W. Liu, P. Liu, D. Mitlin, Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes, Advanced Energy Materials, 10 (2020) 2002297.
[28] E. Peled, S. Menkin, SEI: past, present and future, Journal of The Electrochemical Society, 164 (2017) A1703.
[29] E. Peled, The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model, Journal of The Electrochemical Society, 126 (1979) 2047.
[30] J.-P. Gabano, Lithium batteries, London and New York, (1983).
[31] E. Peled, D. Golodnitsky, G. Ardel, Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes, Journal of the Electrochemical Society, 144 (1997) L208.
[32] M. Gauthier, T.J. Carney, A. Grimaud, L. Giordano, N. Pour, H.-H. Chang, D.P. Fenning, S.F. Lux, O. Paschos, C. Bauer, Electrode–electrolyte interface in Li-ion batteries: current understanding and new insights, The journal of physical chemistry letters, 6 (2015) 4653-4672.
[33] X. Yu, A. Manthiram, Electrode–electrolyte interfaces in lithium-based batteries, Energy & Environmental Science, 11 (2018) 527-543.
[34] J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries, Chemistry of materials, 22 (2010) 587-603.
[35] J.-G. Zhang, W. Xu, W.A. Henderson, Lithium metal anodes and rechargeable lithium metal batteries, Springer International Publishing Switzerland2017.
[36] Q. Wang, H. Wang, J. Wu, M. Zhou, W. Liu, H. Zhou, Advanced electrolyte design for stable lithium metal anode: from liquid to solid, Nano Energy, (2020) 105516.
[37] M. Hagen, D. Hanselmann, K. Ahlbrecht, R. Maça, D. Gerber, J. Tübke, Lithium–sulfur cells: the gap between the state‐of‐the‐art and the requirements for high energy battery cells, Advanced Energy Materials, 5 (2015) 1401986.
[38] C. Zhang, Q. Lan, Y. Liu, J. Wu, H. Shao, H. Zhan, Y. Yang, A dual-layered artificial solid electrolyte interphase formed by controlled electrochemical reduction of LiTFSI/DME-LiNO3 for dendrite-free lithium metal anode, Electrochimica Acta, 306 (2019) 407-419.
[39] B. Tong, J. Wang, Z. Liu, L. Ma, P. Wang, W. Feng, Z. Peng, Z. Zhou, (CH3) 3Si-N [(FSO2)(n-C4F9SO2)]: An additive for dendrite-free lithium metal anode, Journal of Power Sources, 400 (2018) 225-231.
[40] Y. He, Y. Zhang, P. Yu, F. Ding, X. Li, Z. Wang, Z. Lv, X. Wang, Z. Liu, X. Huang, Ion association tailoring SEI composition for Li metal anode protection, Journal of Energy Chemistry, 45 (2020) 1-6.
[41] K.A. See, H.-L. Wu, K.C. Lau, M. Shin, L. Cheng, M. Balasubramanian, K.G. Gallagher, L.A. Curtiss, A.A. Gewirth, Effect of hydrofluoroether cosolvent addition on Li solvation in acetonitrile-based solvate electrolytes and its influence on S reduction in a Li–S battery, ACS applied materials & interfaces, 8 (2016) 34360-34371.
[42] M. Tułodziecki, J.-M. Tarascon, P.-L. Taberna, C. Guéry, Catalytic reduction of TFSI-containing ionic liquid in the presence of lithium cations, Electrochemistry Communications, 77 (2017) 128-132.
[43] X.-G. Sun, S. Dai, Electrochemical investigations of ionic liquids with vinylene carbonate for applications in rechargeable lithium ion batteries, Electrochimica Acta, 55 (2010) 4618-4626.
[44] X. Hu, C. Chen, J. Yan, B. Mao, Electrochemical and in-situ scanning tunneling microscopy studies of bis (fluorosulfonyl) imide and bis (trifluoromethanesulfonyl) imide based ionic liquids on graphite and gold electrodes and lithium salt influence, Journal of Power Sources, 293 (2015) 187-195.
[45] X. Chen, T.-Z. Hou, B. Li, C. Yan, L. Zhu, C. Guan, X.-B. Cheng, H.-J. Peng, J.-Q. Huang, Q. Zhang, Towards stable lithium-sulfur batteries: Mechanistic insights into electrolyte decomposition on lithium metal anode, Energy Storage Materials, 8 (2017) 194-201.
[46] A. Funabiki, M. Inaba, T. Abe, Z. Ogumi, Stage transformation of lithium‐graphite intercalation compounds caused by electrochemical lithium intercalation, Journal of The Electrochemical Society, 146 (1999) 2443.
[47] E. Peled, D. Golodnttsky, G. Ardel, C. Menachem, D.B. Tow, V. Eshkenazy, The role of SEI in lithium and lithium ion batteries, MRS Online Proceedings Library Archive, 393 (1995).
[48] S.J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, D.L. Wood III, The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling, Carbon, 105 (2016) 52-76.
[49] G.G. Eshetu, X. Judez, C. Li, M. Martinez-Ibañez, I. Gracia, O. Bondarchuk, J. Carrasco, L.M. Rodriguez-Martinez, H. Zhang, M. Armand, Ultrahigh performance all solid-state lithium sulfur batteries: salt anion’s chemistry-induced anomalous synergistic effect, Journal of the American chemical society, 140 (2018) 9921-9933.
[50] D. Aurbach, E. Pollak, R. Elazari, G. Salitra, C.S. Kelley, J. Affinito, On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries, Journal of the Electrochemical Society, 156 (2009) A694.
[51] A.A. Assegie, J.-H. Cheng, L.-M. Kuo, W.-N. Su, B.-J. Hwang, Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery, Nanoscale, 10 (2018) 6125-6138.
[52] J. Sablowski, J. Linnemann, S. Hempel, V. Hoffmann, S. Unz, M. Beckmann, L. Giebeler, Electrodeposited metal-organic framework films as self-assembled hierarchically superstructured supports for stable omniphobic surface coatings, Scientific reports, 8 (2018) 1-11.
[53] D. Yin, Z. Wang, Q. Li, H. Xue, Y. Cheng, L. Wang, G. Huang, In Situ Growth of Lithiophilic MOF Layer Enabling Dendrite-free Lithium Deposition, Iscience, 23 (2020) 101869.
[54] Z. Li, X. Huang, C. Sun, X. Chen, J. Hu, A. Stein, B. Tang, Thin-film electrode based on zeolitic imidazolate frameworks (ZIF-8 and ZIF-67) with ultra-stable performance as a lithium-ion battery anode, Journal of Materials Science, 52 (2017) 3979-3991.
[55] S. Maiti, A. Pramanik, U. Manju, S. Mahanty, Reversible lithium storage in manganese 1, 3, 5-benzenetricarboxylate metal–organic framework with high capacity and rate performance, ACS applied materials & interfaces, 7 (2015) 16357-16363.
[56] T. Kim, W. Choi, H.-C. Shin, J.-Y. Choi, J.M. Kim, M.-S. Park, W.-S. Yoon, Applications of voltammetry in lithium ion battery research, Journal of Electrochemical Science and Technology, 11 (2020) 14-25.
[57] G. Nazri, R.H. Muller, Composition of surface layers on Li electrodes in PC, LiClO4 of very low water content, Journal of the Electrochemical Society, 132 (1985) 2050.
[58] G. Nazri, R.H. Muller, In situ X-ray diffraction of surface layers on lithium in nonaqueous electrolyte, (1984).
[59] D. Aurbach, M. Daroux, P. Faguy, E. Yeager, Identification of surface films formed on lithium in propylene carbonate solutions, Journal of The Electrochemical Society, 134 (1987) 1611.
[60] N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, J.L. Dempsey, A practical beginner’s guide to cyclic voltammetry, Journal of chemical education, 95 (2018) 197-206.
[61] A.M. Haregewoin, E.G. Leggesse, J.-C. Jiang, F.-M. Wang, B.-J. Hwang, S.D. Lin, Comparative study on the solid electrolyte interface formation by the reduction of alkyl carbonates in lithium ion battery, Electrochimica Acta, 136 (2014) 274-285.
[62] W. Choi, H.-C. Shin, J.M. Kim, J.-Y. Choi, W.-S. Yoon, Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries, Journal of Electrochemical Science and Technology, 11 (2020) 1-13.
[63] B. Wu, J. Lochala, T. Taverne, J. Xiao, The interplay between solid electrolyte interface (SEI) and dendritic lithium growth, Nano Energy, 40 (2017) 34-41.
[64] A.M. Haregewoin, T.-D. Shie, S.D. Lin, B.-J. Hwang, F.-M. Wang, An effective In Situ drifts analysis of the solid electrolyte interface in lithium-ion battery, ECS Transactions, 53 (2013) 23.
[65] Y.B. Yohannes, S.D. Lin, N.-L. Wu, In situ DRIFTS analysis of solid electrolyte interphase of Si-based anode with and without fluoroethylene carbonate additive, Journal of The Electrochemical Society, 164 (2017) A3641-A3648.
[66] M.A. Teshager, S.D. Lin, B.J. Hwang, F.M. Wang, S. Hy, A.M. Haregewoin, In Situ DRIFTS Analysis of Solid‐Electrolyte Interphase Formation on Li‐Rich Li1. 2Ni0. 2Mn0. 6O2 and LiCoO2 Cathodes during Oxidative Electrolyte Decomposition, ChemElectroChem, 3 (2016) 337-345.
[67] R.R. Mather, Surface modification of textiles by plasma treatments, Surface modification of textiles, Elsevier2009, pp. 296-317.
[68] K.N. Wood, G. Teeter, XPS on Li-battery-related compounds: analysis of inorganic SEI phases and a methodology for charge correction, ACS Applied Energy Materials, 1 (2018) 4493-4504.
[69] C. Lang, A. Naylor, F. Richter, C. Birkl, S. Zekoll, S. Burgess, G. Hughes, D. Howey, P.G. Bruce, Progress in analysing lithium ion battery materials in the SEM, European Microscopy Congress 2016: Proceedings, Wiley Online Library, 2016, pp. 872-873.
[70] H. Yang, L. Yin, H. Shi, K. He, H.-M. Cheng, F. Li, Suppressing lithium dendrite formation by slowing its desolvation kinetics, Chemical Communications, 55 (2019) 13211-13214.
[71] C. Weller, S. Thieme, P. Haertel, H. Althues, S. Kaskel, Intrinsic shuttle suppression in lithium-sulfur batteries for pouch cell application, Journal of The Electrochemical Society, 164 (2017) A3766.
[72] F.S. Reuter, C.J. Huang, Y.C. Hsieh, S. Dörfler, G. Brunklaus, H. Althues, M. Winter, S.D. Lin, B.J. Hwang, S. Kaskel, Stabilizing Effect of Polysulfides on Lithium Metal Anodes in Sparingly Solvating Solvents, Batteries & Supercaps, 4 (2021) 347-358.
[73] Y.-C. Hsieh, J.H. Thienenkamp, C.-J. Huang, H.-C. Tao, U. Rodehorst, B.J. Hwang, M. Winter, G. Brunklaus, Revealing the Impact of Film-Forming Electrolyte Additives on Lithium Metal Batteries via Solid-State NMR/MRI Analysis, The Journal of Physical Chemistry C, 125 (2021) 252-265.
[74] A.R. Fauziah, Engineered Metal-Organic Framework-Based Ionic Diode Membranes with Space Charges for Unprecedented Osmotic Energy Conversion from Organic Solutions, in: NTUST (Ed.), 2021, pp. 36.
[75] Y.Y. Cai, Q. Yang, Z.Y. Zhu, Q.H. Sun, A.M. Zhu, Q.G. Zhang, Q.L. Liu, Achieving efficient proton conduction in a MOF-based proton exchange membrane through an encapsulation strategy, J. Membr. Sci., 590 (2019) 117277.
[76] Y.B. Yohannes, S.D. Lin, N.-L. Wu, B.-J. Hwang, SEI grown on MCMB-electrode with fluoroethylene carbonate and vinylene carbonate additives as probed by in situ DRIFTS, Journal of the Electrochemical Society, 166 (2019) A2741.
[77] C. Xinbing, Z. Qiang, Growth mechanisms and suppression strategies of lithium metal dendrites, Progress in Chemistry, 30 (2018) 51.
[78] L. Gireaud, S. Grugeon, S. Laruelle, B. Yrieix, J.-M. Tarascon, Lithium metal stripping/plating mechanisms studies: A metallurgical approach, Electrochemistry communications, 8 (2006) 1639-1649.
[79] B. Liu, J.-G. Zhang, W. Xu, Advancing lithium metal batteries, Joule, 2 (2018) 833-845.
[80] Q. Wang, H. Wang, J. Wu, M. Zhou, W. Liu, H. Zhou, Advanced electrolyte design for stable lithium metal anode: from liquid to solid, Nano Energy, 80 (2021) 105516.
[81] Y. Li, Z. Yang, Z. Wu, J. Li, J. Zou, C. Jiang, J. Yang, L. Wang, X. Niu, The effects of lithium salt and solvent on lithium metal anode performance, Solid State Ionics, 324 (2018) 144-149.
[82] T.T. Beyene, H.K. Bezabh, M.A. Weret, T.M. Hagos, C.-J. Huang, C.-H. Wang, W.-N. Su, H. Dai, B.-J. Hwang, Concentrated dual-salt electrolyte to stabilize Li metal and increase cycle life of anode free Li-metal batteries, Journal of The Electrochemical Society, 166 (2019) A1501.
[83] R. Miao, J. Yang, X. Feng, H. Jia, J. Wang, Y. Nuli, Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility, Journal of Power Sources, 271 (2014) 291-297.
[84] T. Li, P. Shi, R. Zhang, H. Liu, X.-B. Cheng, Q. Zhang, Dendrite-free sandwiched ultrathin lithium metal anode with even lithium plating and stripping behavior, Nano Research, 12 (2019) 2224-2229.
[85] T. Jaumann, J. Balach, M. Klose, S. Oswald, J. Eckert, L. Giebeler, Role of 1, 3-dioxolane and LiNO3 addition on the long term stability of nanostructured silicon/carbon anodes for rechargeable lithium batteries, Journal of The Electrochemical Society, 163 (2016) A557.
[86] W. Li, H. Yao, K. Yan, G. Zheng, Z. Liang, Y.-M. Chiang, Y. Cui, The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth, Nature communications, 6 (2015) 1-8.
[87] L. Lodovico, A. Varzi, S. Passerini, Radical decomposition of ether-based electrolytes for Li-S batteries, Journal of The Electrochemical Society, 164 (2017) A1812.
[88] X. Liang, Z. Wen, Y. Liu, M. Wu, J. Jin, H. Zhang, X. Wu, Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte, Journal of Power Sources, 196 (2011) 9839-9843.
[89] Z. Xie, Z. Wu, X. An, X. Yue, A. Yoshida, X. Du, X. Hao, A. Abudula, G. Guan, 2-Fluoropyridine: A novel electrolyte additive for lithium metal batteries with high areal capacity as well as high cycling stability, Chemical Engineering Journal, 393 (2020) 124789.
[90] L.E. Camacho-Forero, T.W. Smith, S. Bertolini, P.B. Balbuena, Reactivity at the lithium–metal anode surface of lithium–sulfur batteries, The Journal of Physical Chemistry C, 119 (2015) 26828-26839.
[91] I.-J. Park, T.-H. Nam, J.-G. Kim, Diphenyloctyl phosphate as a solid electrolyte interphase forming additive for Li-ion batteries, Journal of power sources, 244 (2013) 122-128.
[92] P. Lu, C. Li, E.W. Schneider, S.J. Harris, Chemistry, impedance, and morphology evolution in solid electrolyte interphase films during formation in lithium ion batteries, The Journal of Physical Chemistry C, 118 (2014) 896-903.
[93] K. Naoi, N. Ogihara, Y. Igarashi, A. Kamakura, Y. Kusachi, K. Utsugi, Disordered carbon anode for lithium-ion battery: I. An interfacial reversible redox action and anomalous topology changes, Journal of the electrochemical Society, 152 (2005) A1047.
[94] N.C. Gallego, C.I. Contescu, H.M. Meyer III, J.Y. Howe, R.A. Meisner, E.A. Payzant, M.J. Lance, S.Y. Yoon, M. Denlinger, D.L. Wood III, Advanced surface and microstructural characterization of natural graphite anodes for lithium ion batteries, Carbon, 72 (2014) 393-401.
[95] M. Nie, D.P. Abraham, D.M. Seo, Y. Chen, A. Bose, B.L. Lucht, Role of solution structure in solid electrolyte interphase formation on graphite with LiPF6 in propylene carbonate, The Journal of Physical Chemistry C, 117 (2013) 25381-25389.
[96] P. Verma, P. Maire, P. Novák, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries, Electrochimica Acta, 55 (2010) 6332-6341.
[97] K. Tasaki, K. Kanda, S. Nakamura, M. Ue, Decomposition of LiPF6and Stability of PF 5 in Li-Ion Battery Electrolytes: Density Functional Theory and Molecular Dynamics Studies, Journal of the Electrochemical Society, 150 (2003) A1628.
[98] Y.B. Yohannes, S.D. Lin, N.-L. Wu, In situ DRIFTS analysis of solid electrolyte interphase of Si-based anode with and without fluoroethylene carbonate additive, Journal of The Electrochemical Society, 164 (2017) A3641.
[99] B.D. Adams, E.V. Carino, J.G. Connell, K.S. Han, R. Cao, J. Chen, J. Zheng, Q. Li, K.T. Mueller, W.A. Henderson, Long term stability of Li-S batteries using high concentration lithium nitrate electrolytes, Nano Energy, 40 (2017) 607-617.
[100] H. Zhang, G.G. Eshetu, X. Judez, C. Li, L.M. Rodriguez‐Martínez, M. Armand, Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives, Angewandte Chemie International Edition, 57 (2018) 15002-15027.
[101] W. Zhang, H.L. Zhuang, L. Fan, L. Gao, Y. Lu, A “cation-anion regulation” synergistic anode host for dendrite-free lithium metal batteries, Science advances, 4 (2018) eaar4410.
[102] B.D. Adams, J. Zheng, X. Ren, W. Xu, J.G. Zhang, Accurate determination of Coulombic efficiency for lithium metal anodes and lithium metal batteries, Advanced Energy Materials, 8 (2018) 1702097.
[103] H. Jin, H. Liu, H. Cheng, P. Zhang, M. Wang, The synergistic effect of lithium bis (fluorosulfonyl) imide and lithium nitrate for high-performance lithium metal anode, Journal of Electroanalytical Chemistry, 874 (2020) 114484.
[104] C. Yan, Y.X. Yao, X. Chen, X.B. Cheng, X.Q. Zhang, J.Q. Huang, Q. Zhang, Lithium nitrate solvation chemistry in carbonate electrolyte sustains high‐voltage lithium metal batteries, Angewandte Chemie, 130 (2018) 14251-14255.
[105] V. Etacheri, U. Geiger, Y. Gofer, G.A. Roberts, I.C. Stefan, R. Fasching, D. Aurbach, Exceptional electrochemical performance of Si-nanowires in 1, 3-dioxolane solutions: a surface chemical investigation, Langmuir, 28 (2012) 6175-6184.
[106] V. Marangon, C. Hernández‐Rentero, M. Olivares‐Marín, V. Gómez‐Serrano, Á. Caballero, J. Morales, J. Hassoun, A Stable High‐Capacity Lithium‐Ion Battery Using a Biomass‐Derived Sulfur‐Carbon Cathode and Lithiated Silicon Anode, ChemSusChem, 14 (2021) 3333-3343.
[107] X. Chen, N. Yao, B.-S. Zeng, Q. Zhang, Ion–solvent chemistry in lithium battery electrolytes: from mono-solvent to multi-solvent complexes, Fundamental Research, 1 (2021) 393-398.
[108] J. Han, Y. Zheng, N. Guo, P.B. Balbuena, Calculated Reduction Potentials of Electrolyte Species in Lithium–Sulfur Batteries, The Journal of Physical Chemistry C, 124 (2020) 20654-20670.
[109] F. Mestre-Aizpurua, S. Laruelle, S. Grugeon, J.-M. Tarascon, M.R. Palacín, High temperature lithium cells using conversion oxide electrodes, Journal of Applied Electrochemistry, 40 (2010) 1365-1370.
[110] W. Kam, C.-W. Liew, J. Lim, S. Ramesh, Electrical, structural, and thermal studies of antimony trioxide-doped poly (acrylic acid)-based composite polymer electrolytes, Ionics, 20 (2014) 665-674.
[111] I. Rey, P. Johansson, J. Lindgren, J. Lassegues, J. Grondin, L. Servant, Spectroscopic and theoretical study of (CF3SO2) 2N-(TFSI-) and (CF3SO2) 2NH (HTFSI), The Journal of Physical Chemistry A, 102 (1998) 3249-3258.
[112] M. Brooker, D. Irish, Infrared and Raman Spectroscopic Studies of Solid Alkali Metal Nitrites, Canadian Journal of Chemistry, 49 (1971) 1289-1295.
[113] E.M. Karlsen, J. Spanget-Larsen, FTIR investigation of the reaction between pyridine and iodine in a polyethylene host. Formation of N-iodopyridinium polyiodide, Chemical Physics Letters, 473 (2009) 227-232.
[114] F.P. Urena, M.F. Gomez, J.L. González, E.M.n. Torres, A new insight into the vibrational analysis of pyridine, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 59 (2003) 2815-2839.
[115] P. Boopalachandran, J. Laane, Vibrational spectra, structure, and theoretical calculations of 2-fluoro-and 3-fluoropyridine, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79 (2011) 1191-1195.
[116] R.J. Blint, Binding of ether and carbonyl oxygens to lithium ion, Journal of the Electrochemical Society, 142 (1995) 696.
[117] L. Lodovico, A. Varzi, S. Passerini, Effect of Aging-Induced Dioxolane Polymerization on the Electrochemistry of Carbon-Coated Lithium Sulfide, Frontiers in chemistry, 7 (2020) 893.
[118] Z. Zhang, J. Wang, S. Zhang, H. Ying, Z. Zhuang, F. Ma, P. Huang, T. Yang, G. Han, W.-Q. Han, Stable all-solid-state lithium metal batteries with Li3N-LiF-enriched interface induced by lithium nitrate addition, Energy Storage Materials, 43 (2021) 229-237.
[119] Q. Liu, A. Cresce, M. Schroeder, K. Xu, D. Mu, B. Wu, L. Shi, F. Wu, Insight on lithium metal anode interphasial chemistry: Reduction mechanism of cyclic ether solvent and SEI film formation, Energy Storage Materials, 17 (2019) 366-373.
[120] C.-Z. Zhao, X.-B. Cheng, R. Zhang, H.-J. Peng, J.-Q. Huang, R. Ran, Z.-H. Huang, F. Wei, Q. Zhang, Li2S5-based ternary-salt electrolyte for robust lithium metal anode, Energy Storage Materials, 3 (2016) 77-84.
[121] S. Eijima, H. Sonoki, M. Matsumoto, S. Taminato, D. Mori, N. Imanishi, Solid electrolyte interphase film on lithium metal anode in mixed-salt system, Journal of The Electrochemical Society, 166 (2019) A5421.
[122] J. Contour, A. Salesse, M. Froment, M. Garreau, J. Thevenin, D. Warin, Analysis by electron-microscopy and XPS of lithium surfaces polarized in anhydrous organic electrolytes, Journal de Microscopie et de Spectroscopie Electroniques, 4 (1979) 483-491.
[123] I.V. Antonova, I.I. Kurkina, A.K. Gutakovskii, I.A. Kotin, A.I. Ivanov, N.A. Nebogatikova, R.A. Soots, S.A. Smagulova, Fluorinated graphene suspension for flexible and printed electronics: Flakes, 2D films, and heterostructures, Materials & Design, 164 (2019) 107526.
[124] K. Kanamura, S. Shiraishi, H. Tamura, Z.i. Takehara, X‐Ray Photoelectron Spectroscopic Analysis and Scanning Electron Microscopic Observation of the Lithium Surface Immersed in Nonaqueous Solvents, Journal of The Electrochemical Society, 141 (1994) 2379.
[125] Y. Gao, T. Rojas, K. Wang, S. Liu, D. Wang, T. Chen, H. Wang, A.T. Ngo, D. Wang, Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface, Nature Energy, 5 (2020) 534-542.
[126] X. Li, X. Sun, Nitrogen-doped carbons in Li–S batteries: materials design and electrochemical mechanism, Frontiers in Energy Research, 2 (2014) 49.
[127] M.S. Whittingham, History, evolution, and future status of energy storage, Proceedings of the IEEE, 100 (2012) 1518-1534.
[128] X. Ji, L.F. Nazar, Advances in Li–S batteries, Journal of Materials Chemistry, 20 (2010) 9821-9826.
[129] Z. Lin, Z. Liu, W. Fu, N.J. Dudney, C. Liang, Phosphorous pentasulfide as a novel additive for high‐performance lithium‐sulfur batteries, Advanced Functional Materials, 23 (2013) 1064-1069.
[130] A. Ramasubramanian, V. Yurkiv, T. Foroozan, M. Ragone, R. Shahbazian-Yassar, F. Mashayek, Stability of Solid-Electrolyte Interphase (SEI) on the Lithium Metal Surface in Lithium Metal Batteries (LMBs), ACS Applied Energy Materials, 3 (2020) 10560-10567.
[131] D. Aurbach, E. Zinigrad, Y. Cohen, H. Teller, A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions, Solid state ionics, 148 (2002) 405-416.
[132] S. Shiraishi, K. Kanamura, Z.i. Takehara, Surface Condition Changes in Lithium Metal Deposited in Nonaqueous Electrolyte Containing HF by Dissolution‐Deposition Cycles, Journal of the Electrochemical Society, 146 (1999) 1633.
[133] B.N. Olana, S.D. Lin, B.-J. Hwang, In situ diffuse reflectance infrared Fourier-transformed spectroscopy study of solid electrolyte interphase formation from lithium bis (trifluoromethanesulfonyl) imide in 1, 2-dimethoxyethane and 1, 3-dioxolane with and without lithium nitrate additive over lithium and copper metal anodes, Electrochimica Acta, 416 (2022) 140266.
[134] I. Zaafarany, H. Boller, Corrosion of copper electrode in sodium sulfide solution, Journal of Saudi Chemical Society, 14 (2010) 183-189.
[135] X. Zhang, A. Wang, R. Lv, J. Luo, A corrosion-resistant current collector for lithium metal anodes, Energy Storage Materials, 18 (2019) 199-204.
[136] P. Basu, T. Ballinger, J. Yates Jr, Fluoroalkyl ether chemistry on alumina: a transmission infrared study of the adsorption and thermal decomposition of difluoromethyl ether on alumina, Langmuir, 5 (1989) 502-510.
[137] D.S. Warren, A.J. McQuillan, Infrared spectroscopic and DFT vibrational mode study of perfluoro (2-ethoxyethane) sulfonic acid (PES), a model Nafion side-chain molecule, The Journal of Physical Chemistry B, 112 (2008) 10535-10543.
[138] H.M. Badawi, W. Förner, B. El Ali, A.-R.A. Al-Durais, Ring inversion, structural stability and vibrational assignments of sulfolane c-C4H8SO2 and 3-sulfolene c-C4H6SO2, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 70 (2008) 983-990.
[139] J. Katon, W. Feairheller Jr, The vibrational spectra and molecular configuration of sulfolane, Spectrochimica Acta, 21 (1965) 199-201.
[140] L. Ng, J. Chen, P. Basu, J. Yates Jr, Electron-stimulated decomposition of alkyl and fluoroalkyl ethers adsorbed on alumina, Langmuir, 3 (1987) 1161-1167.
[141] P.C. Howlett, N. Brack, A.F. Hollenkamp, M. Forsyth, D.R. Macfarlane, Characterization of the lithium surface in N-methyl-N-alkylpyrrolidinium bis (trifluoromethanesulfonyl) amide room-temperature ionic liquid electrolytes, Journal of the electrochemical society, 153 (2006) A595.
[142] J.-C. Lassègues, J. Grondin, C. Aupetit, P. Johansson, Spectroscopic identification of the lithium ion transporting species in LiTFSI-doped ionic liquids, The Journal of Physical Chemistry A, 113 (2009) 305-314.
[143] A. Nakanishi, K. Ueno, D. Watanabe, Y. Ugata, Y. Matsumae, J. Liu, M.L. Thomas, K. Dokko, M. Watanabe, Sulfolane-based highly concentrated electrolytes of lithium bis (trifluoromethanesulfonyl) amide: ionic transport, Li-Ion coordination, and Li–S battery performance, The Journal of Physical Chemistry C, 123 (2019) 14229-14238.
[144] R.A. Nyquist, Interpreting infrared, Raman, and nuclear magnetic resonance spectra, Academic Press2001.
[145] W. Groh, Overtone absorption in macromolecules for polymer optical fibers, Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 189 (1988) 2861-2874.
[146] M. Osawa, K.-I. Ataka, K. Yoshii, Y. Nishikawa, Surface-enhanced infrared spectroscopy: the origin of the absorption enhancement and band selection rule in the infrared spectra of molecules adsorbed on fine metal particles, Applied spectroscopy, 47 (1993) 1497-1502.
[147] B.N. Olana, S.D. Lin, B.-J. Hwang, In Situ diffuse reflectance infrared Fourier-transformed spectroscopy study of solid electrolyte interphase formation from Lithium bis (trifluoromethanesulfonyl) imide in 1, 2-dimethoxyethane and 1, 3-dioxolane with and without Lithium nitrate additive over Lithium and Copper metal anodes, Electrochimica Acta, (2022) 140266.
[148] R.L. Hudson, P.A. Gerakines, Infrared Spectra and Interstellar Sulfur: New Laboratory Results for H2S and Four Malodorous Thiol Ices, The Astrophysical Journal, 867 (2018) 138.
[149] J. Kiefer, J. Fries, A. Leipertz, Experimental vibrational study of imidazolium-based ionic liquids: Raman and infrared spectra of 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide and 1-ethyl-3-methylimidazolium ethylsulfate, Applied spectroscopy, 61 (2007) 1306-1311.
[150] R.L. Hudson, Y.Y. Yarnall, F.M. Coleman, Infrared band strengths and other properties of amorphous and crystalline dimethyl ether, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 233 (2020) 118217.
[151] J.F. Vélez, M. Aparicio, J. Mosa, Effect of lithium salt in nanostructured silica–polyethylene glycol solid electrolytes for Li-ion battery applications, The Journal of Physical Chemistry C, 120 (2016) 22852-22864.
[152] S. Nunes, V. de Zea Bermudez, D. Ostrovskii, P. Barbosa, M.M. Silva, M.J. Smith, Cationic and anionic environments in LiTFSI-doped di-ureasils with application in solid-state electrochromic devices, Chemical Physics, 345 (2008) 32-40.
[153] C.-u. Ro, R.W. Linton, Characterization of LiF using XPS, Surface Science Spectra, 1 (1992) 277-283.
[154] A.A. Razzaq, Y. Yao, R. Shah, P. Qi, L. Miao, M. Chen, X. Zhao, Y. Peng, Z. Deng, High-performance lithium sulfur batteries enabled by a synergy between sulfur and carbon nanotubes, Energy Storage Materials, 16 (2019) 194-202.
[155] Y. Li, K.-H. Wu, N. Huang, S. Dalapati, B.-J. Su, L.-Y. Jang, I.R. Gentle, D. Jiang, D.-W. Wang, Long-chain solid organic polysulfide cathode for high-capacity secondary lithium batteries, Energy Storage Materials, 12 (2018) 30-36.
[156] L. Chen, Z. Xu, J. Li, B. Zhou, M. Shan, Y. Li, L. Liu, B. Li, J. Niu, Modifying graphite oxide nanostructures in various media by high-energy irradiation, RSC Advances, 4 (2014) 1025-1031.
[157] S. Jiao, X. Ren, R. Cao, M.H. Engelhard, Y. Liu, D. Hu, D. Mei, J. Zheng, W. Zhao, Q. Li, Stable cycling of high-voltage lithium metal batteries in ether electrolytes, Nature Energy, 3 (2018) 739-746.
[158] B. Shi, Y. Su, Y. Duan, S. Chen, W. Zuo, A nanocomposite prepared from copper (II) and nitrogen-doped graphene quantum dots with peroxidase mimicking properties for chemiluminescent determination of uric acid, Microchimica Acta, 186 (2019) 1-10.
[159] L. Wilde, M. Polcik, J. Haase, B. Brena, D. Cocco, G. Comelli, G. Paolucci, Adsorption and temperature-dependent decomposition of SO2 on Ni (110): an XPS and XAFS study, Surface science, 405 (1998) 215-227.
[160] V. Shutthanandan, M. Nandasiri, J. Zheng, M.H. Engelhard, W. Xu, S. Thevuthasan, V. Murugesan, Applications of XPS in the characterization of Battery materials, Journal of Electron Spectroscopy and Related Phenomena, 231 (2019) 2-10.
[161] C. Zha, X. Gu, D. Wu, H. Chen, Interfacial active fluorine site-induced electron transfer on TiO 2 (001) facets to enhance polysulfide redox reactions for better liquid Li 2 S 6-Based lithium–sulfur batteries, Journal of Materials Chemistry A, 7 (2019) 6431-6438.
[162] H. Grönbeck, A. Curioni, W. Andreoni, Thiols and disulfides on the Au (111) surface: the headgroup− gold interaction, Journal of the American Chemical Society, 122 (2000) 3839-3842.
[163] T. Baše, Z. Bastl, Z. Plzák, T. Grygar, J. Plešek, M.J. Carr, V. Malina, J. Šubrt, J. Bohácek, E. Večerníková, Carboranethiol-modified gold surfaces. A study and comparison of modified cluster and flat surfaces, Langmuir, 21 (2005) 7776-7785.
[164] B.N. Olana, S.A. Kitte, T.R. Soreta, Electrochemical determination of ascorbic acid at p-phenylenediamine film–holes modified glassy carbon electrodes, Journal of the Serbian Chemical Society, 80 (2015) 1161–1175-1161–1175.
[165] N. Azimi, W. Weng, C. Takoudis, Z. Zhang, Improved performance of lithium–sulfur battery with fluorinated electrolyte, Electrochemistry communications, 37 (2013) 96-99.
[166] X. Cui, H. Zhang, S. Li, Y. Zhao, L. Mao, W. Zhao, Y. Li, X. Ye, Electrochemical performances of a novel high-voltage electrolyte based upon sulfolane and γ-butyrolactone, Journal of power sources, 240 (2013) 476-485.
[167] X. Huang, Z. Wang, R. Knibbe, B. Luo, S.A. Ahad, D. Sun, L. Wang, Cyclic voltammetry in lithium–sulfur batteries—challenges and opportunities, Energy Technology, 7 (2019) 1801001.
[168] G. Babu, K. Ababtain, K.S. Ng, L.M.R. Arava, Electrocatalysis of lithium polysulfides: current collectors as electrodes in Li/S battery configuration, Scientific reports, 5 (2015) 8763.
[169] Y. Hou, J. Li, X. Gao, Z. Wen, C. Yuan, J. Chen, 3D dual-confined sulfur encapsulated in porous carbon nanosheets and wrapped with graphene aerogels as a cathode for advanced lithium sulfur batteries, Nanoscale, 8 (2016) 8228-8235.
[170] H.-L. Wu, L.A. Huff, A.A. Gewirth, In situ Raman spectroscopy of sulfur speciation in lithium–sulfur batteries, ACS applied materials & interfaces, 7 (2015) 1709-1719.
[171] Y. Song, Z. Liu, H.-k. Mao, R.J. Hemley, D.R. Herschbach, High-pressure vibrational spectroscopy of sulfur dioxide, The Journal of chemical physics, 122 (2005) 174511.
[172] M.A. Weret, C.-F.J. Kuo, W.-N. Su, T.S. Zeleke, C.-J. Huang, N.A. Sahalie, T.A. Zegeye, Z.T. Wondimkun, F.W. Fenta, B.A. Jote, Fibrous organosulfur cathode materials with high bonded sulfur for high-performance lithium-sulfur batteries, Journal of Power Sources, 541 (2022) 231693.
[173] C.-J. Huang, J.-H. Cheng, W.-N. Su, P. Partovi-Azar, L.-Y. Kuo, M.-C. Tsai, M.-H. Lin, S.P. Jand, T.-S. Chan, N.-L. Wu, Origin of shuttle-free sulfurized polyacrylonitrile in lithium-sulfur batteries, Journal of Power Sources, 492 (2021) 229508.
[174] T.T. Beyene, B.A. Jote, Z.T. Wondimkun, B.W. Olbassa, C.-J. Huang, B. Thirumalraj, C.-H. Wang, W.-N. Su, H. Dai, B.-J. Hwang, Effects of concentrated salt and resting protocol on solid electrolyte interface formation for improved cycle stability of anode-free lithium metal batteries, ACS applied materials & interfaces, 11 (2019) 31962-31971.
[175] N. Azimi, Z. Xue, I. Bloom, M.L. Gordin, D. Wang, T. Daniel, C. Takoudis, Z. Zhang, Understanding the effect of a fluorinated ether on the performance of lithium–sulfur batteries, ACS applied materials & interfaces, 7 (2015) 9169-9177.
[176] Y. Diao, K. Xie, S. Xiong, X. Hong, Insights into Li-S battery cathode capacity fading mechanisms: irreversible oxidation of active mass during cycling, Journal of The Electrochemical Society, 159 (2012) A1816.
[177] O.J. Guy, K.-A.D. Walker, Graphene functionalization for biosensor applications, Silicon Carbide Biotechnology, (2016) 85-141.
[178] M. Saito, T. Fujinami, S. Yamada, T. Ishikawa, H. Otsuka, K. Ito, Y. Kubo, Effects of Li salt anions and O2 gas on Li dissolution/deposition behavior at Li metal negative electrode for non-aqueous Li-air batteries, Journal of The Electrochemical Society, 164 (2017) A2872.
[179] A.A. Razzaq, X. Yuan, Y. Chen, J. Hu, Q. Mu, Y. Ma, X. Zhao, L. Miao, J.-H. Ahn, Y. Peng, Anchoring MOF-derived CoS 2 on sulfurized polyacrylonitrile nanofibers for high areal capacity lithium–sulfur batteries, Journal of Materials Chemistry A, 8 (2020) 1298-1306.
[180] C.-J. Huang, B. Thirumalraj, H.-C. Tao, K.N. Shitaw, H. Sutiono, T.T. Hagos, T.T. Beyene, L.-M. Kuo, C.-C. Wang, S.-H. Wu, Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal batteries, Nature communications, 12 (2021) 1-10.
[181] C. Heubner, S. Maletti, H. Auer, J. Hüttl, K. Voigt, O. Lohrberg, K. Nikolowski, M. Partsch, A. Michaelis, From Lithium‐Metal toward Anode‐Free Solid‐State Batteries: Current Developments, Issues, and Challenges, Advanced Functional Materials, 31 (2021) 2106608.
[182] A. Varzi, K. Thanner, R. Scipioni, D. Di Lecce, J. Hassoun, S. Dörfler, H. Altheus, S. Kaskel, C. Prehal, S.A. Freunberger, Current status and future perspectives of lithium metal batteries, Journal of Power Sources, 480 (2020) 228803.
[183] X.Q. Zhang, X. Chen, X.B. Cheng, B.Q. Li, X. Shen, C. Yan, J.Q. Huang, Q. Zhang, Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes, Angewandte Chemie, 130 (2018) 5399-5403.
[184] L. Li, S. Li, Y. Lu, Suppression of dendritic lithium growth in lithium metal-based batteries, Chemical communications, 54 (2018) 6648-6661.
[185] N. Li, Q. Ye, K. Zhang, H. Yan, C. Shen, B. Wei, K. Xie, Normalized Lithium Growth from the Nucleation Stage for Dendrite‐Free Lithium Metal Anodes, Angewandte Chemie International Edition, 58 (2019) 18246-18251.
[186] M.D. Tikekar, S. Choudhury, Z. Tu, L.A. Archer, Design principles for electrolytes and interfaces for stable lithium-metal batteries, Nature Energy, 1 (2016) 1-7.
[187] A.A. Assegie, C.-C. Chung, M.-C. Tsai, W.-N. Su, C.-W. Chen, B.-J. Hwang, Multilayer-graphene-stabilized lithium deposition for anode-Free lithium-metal batteries, Nanoscale, 11 (2019) 2710-2720.
[188] J. Zhao, H. Yuan, G. Wang, X.F. Lim, H. Ye, V. Wee, Y. Fang, J.Y. Lee, D. Zhao, Stabilization of lithium metal anodes by conductive metal–organic framework architectures, Journal of Materials Chemistry A, 9 (2021) 12099-12108.
[189] Z. Sun, F. Xin, C. Cao, C. Zhao, C. Shen, W.-Q. Han, Hollow silica–copper–carbon anodes using copper metal–organic frameworks as skeletons, Nanoscale, 7 (2015) 20426-20434.
[190] J. Qian, Y. Li, M. Zhang, R. Luo, F. Wang, Y. Ye, Y. Xing, W. Li, W. Qu, L. Wang, Protecting lithium/sodium metal anode with metal-organic framework based compact and robust shield, Nano Energy, 60 (2019) 866-874.
[191] K.L. Mulfort, O.K. Farha, C.L. Stern, A.A. Sarjeant, J.T. Hupp, Post-synthesis alkoxide formation within metal− organic framework materials: a strategy for incorporating highly coordinatively unsaturated metal ions, Journal of the American Chemical Society, 131 (2009) 3866-3868.
[192] H. Zhang, J. Hou, Y. Hu, P. Wang, R. Ou, L. Jiang, J.Z. Liu, B.D. Freeman, A.J. Hill, H. Wang, Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores, Science advances, 4 (2018) eaaq0066.
[193] Y. Lin, Q. Zhang, C. Zhao, H. Li, C. Kong, C. Shen, L. Chen, An exceptionally stable functionalized metal–organic framework for lithium storage, Chemical Communications, 51 (2015) 697-699.
[194] Y.-C. Liu, L.-H. Yeh, M.-J. Zheng, K.C.-W. Wu, Highly selective and high-performance osmotic power generators in subnanochannel membranes enabled by metal-organic frameworks, Science Advances, 7 (2021) eabe9924.
[195] M.J.C. Ordonez, K.J. Balkus Jr, J.P. Ferraris, I.H. Musselman, Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes, Journal of Membrane Science, 361 (2010) 28-37.
[196] Y. Hu, H. Kazemian, S. Rohani, Y. Huang, Y. Song, In situ high pressure study of ZIF-8 by FTIR spectroscopy, Chemical communications, 47 (2011) 12694-12696.
[197] Z. Huang, J. Zhou, Y. Zhao, H. Cheng, G. Lu, A. Morawski, Y. Yu, Stable core–shell ZIF-8@ ZIF-67 MOFs photocatalyst for highly efficient degradation of organic pollutant and hydrogen evolution, Journal of Materials Research, 36 (2021) 602-614.
[198] C. Wu, Q. Liu, R. Chen, J. Liu, H. Zhang, R. Li, K. Takahashi, P. Liu, J. Wang, Fabrication of ZIF-8@ SiO2 micro/nano hierarchical superhydrophobic surface on AZ31 magnesium alloy with impressive corrosion resistance and abrasion resistance, ACS applied materials & interfaces, 9 (2017) 11106-11115.
[199] R. Weiss, A. Sen, C. Willis, L. Pottick, Block copolymer ionomers: 1. Synthesis and physical properties of sulphonated poly (styrene-ethylene/butylene-styrene), Polymer, 32 (1991) 1867-1874.
[200] D. Krishnamurti, R. Somashekar, Mesomorphic behaviour of dodecyl benzene sulfonic acid and its sodium salt, Molecular Crystals and Liquid Crystals, 65 (1981) 3-22.
[201] A.P. Mártire, G.M. Segovia, O. Azzaroni, M. Rafti, W. Marmisollé, Layer-by-layer integration of conducting polymers and metal organic frameworks onto electrode surfaces: enhancement of the oxygen reduction reaction through electrocatalytic nanoarchitectonics, Molecular Systems Design & Engineering, 4 (2019) 893-900.
[202] B. Wu, J. Pan, L. Ge, L. Wu, H. Wang, T. Xu, Oriented MOF-polymer composite nanofiber membranes for high proton conductivity at high temperature and anhydrous condition, Scientific reports, 4 (2014) 1-7.
[203] D. Huang, Q. Xin, Y. Ni, Y. Shuai, S. Wang, Y. Li, H. Ye, L. Lin, X. Ding, Y. Zhang, Synergistic effects of zeolite imidazole framework@ graphene oxide composites in humidified mixed matrix membranes on CO 2 separation, RSC advances, 8 (2018) 6099-6109.
[204] N.B.H. Mohamed, M. Haouari, N. Jaballah, A. Bchetnia, K. Hriz, M. Majdoub, H.B. Ouada, Optical and IR study of CdS nanoparticles dispersed in a new confined p-phenylenevinylene, Physica B: Condensed Matter, 407 (2012) 3849-3855.
[205] S.S. Zhang, Role of LiNO3 in rechargeable lithium/sulfur battery, Electrochimica Acta, 70 (2012) 344-348.
[206] J. Qian, B.D. Adams, J. Zheng, W. Xu, W.A. Henderson, J. Wang, M.E. Bowden, S. Xu, J. Hu, J.G. Zhang, Anode‐free rechargeable lithium metal batteries, Advanced Functional Materials, 26 (2016) 7094-7102.
[207] D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries, Nature nanotechnology, 12 (2017) 194-206.
[208] S.-Y. Lee, J. Shangguan, J. Alvarado, S. Betzler, S.J. Harris, M.M. Doeff, H. Zheng, Unveiling the mechanisms of lithium dendrite suppression by cationic polymer film induced solid–electrolyte interphase modification, Energy & Environmental Science, 13 (2020) 1832-1842.
[209] K. Xu, Electrolytes and interphases in Li-ion batteries and beyond, Chemical reviews, 114 (2014) 11503-11618.
[210] A. Wang, S. Kadam, H. Li, S. Shi, Y. Qi, Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries, npj Computational Materials, 4 (2018) 1-26.
[211] K. Leung, Y. Qi, K.R. Zavadil, Y.S. Jung, A.C. Dillon, A.S. Cavanagh, S.-H. Lee, S.M. George, Using atomic layer deposition to hinder solvent decomposition in lithium ion batteries: first-principles modeling and experimental studies, Journal of the American Chemical Society, 133 (2011) 14741-14754.
[212] A.M. Haregewoin, E.G. Leggesse, J.-C. Jiang, F.-M. Wang, B.-J. Hwang, S.D. Lin, A combined experimental and theoretical study of surface film formation: Effect of oxygen on the reduction mechanism of propylene carbonate, Journal of power sources, 244 (2013) 318-327.
[213] B. Yang, H. Zhang, L. Yu, W. Fan, D. Huang, Lithium difluorophosphate as an additive to improve the low temperature performance of LiNi0. 5Co0. 2Mn0. 3O2/graphite cells, Electrochimica acta, 221 (2016) 107-114.
[214] G. Yang, J. Shi, C. Shen, S. Wang, L. Xia, H. Hu, H. Luo, Y. Xia, Z. Liu, Improving the cyclability performance of lithium-ion batteries by introducing lithium difluorophosphate (LiPO 2 F 2) additive, RSC advances, 7 (2017) 26052-26059.
[215] P. Shi, L. Zhang, H. Xiang, X. Liang, Y. Sun, W. Xu, Lithium difluorophosphate as a dendrite-suppressing additive for lithium metal batteries, ACS applied materials & interfaces, 10 (2018) 22201-22209.
[216] D. Zhao, S. Song, X. Ye, P. Wang, J. Wang, Y. Wei, C. Li, L. Mao, H. Zhang, S. Li, New insight into the mechanism of LiPO2F2 on the interface of high-voltage cathode LiNi0. 5Mn1. 5O4 with truncated octahedral structure, Applied Surface Science, 491 (2019) 595-606.
[217] S. Menkin, C.A. O’Keefe, A.B. Gunnarsdóttir, S. Dey, F.M. Pesci, Z. Shen, A. Aguadero, C.P. Grey, Toward an Understanding of SEI Formation and Lithium Plating on Copper in Anode-Free Batteries, The Journal of Physical Chemistry C, 125 (2021) 16719-16732.
[218] W. Zhao, F. Ren, Q. Yan, H. Liu, Y. Yang, A facile synthesis of non-aqueous LiPO2F2 solution as the electrolyte additive for high performance lithium ion batteries, Chinese Chemical Letters, 31 (2020) 3209-3212.
[219] M. Zhao, S. Kariuki, H.D. Dewald, F.R. Lemke, R.J. Staniewicz, E.J. Plichta, R.A. Marsh, Electrochemical stability of copper in lithium‐ion battery electrolytes, Journal of the Electrochemical Society, 147 (2000) 2874.
[220] T. Kawaguchi, K. Shimada, T. Ichitsubo, S. Yagi, E. Matsubara, Surface-layer formation by reductive decomposition of LiPF6 at relatively high potentials on negative electrodes in lithium ion batteries and its suppression, Journal of Power Sources, 271 (2014) 431-436.
[221] G. Han, Y. Wang, H. Li, Z. Yang, S. Pan, The first lithium difluorophosphate LiPO 2 F 2 with a neutral polytetrahedral microporous architecture, Chemical Communications, 55 (2019) 1817-1820.
[222] E. Elkhattabi, M. Lakraimi, M. Berraho, A. Legrouri, R. Hammal, M. Badreddine, L. El Gaini, Study of the properties of intercalation and grafting of phosphonate ions in layered double hydroxides, J. Mater. Environ. Sci, 7 (2016) 790-798.
[223] P. Christensen, A. Hamnett, In-situ techniques in electrochemistry—ellipsometry and FTIR, Electrochimica Acta, 45 (2000) 2443-2459.
[224] B.S. Parimalam, B.L. Lucht, Reduction reactions of electrolyte salts for lithium ion batteries: LiPF6, LiBF4, LiDFOB, LiBOB, and LiTFSI, Journal of The Electrochemical Society, 165 (2018) A251.

無法下載圖示 全文公開日期 2025/08/09 (校內網路)
全文公開日期 2025/08/09 (校外網路)
全文公開日期 2025/08/09 (國家圖書館:臺灣博碩士論文系統)
QR CODE