簡易檢索 / 詳目顯示

研究生: 陳方榮
Kevin Soesanto
論文名稱: 用於固態高分子電解質的丙烯腈基高分子的合成與特性
Synthesize and Characterization of Acrylonitrile-Based Polymer for Solid-State Polymer Electrolyte
指導教授: 陳崇賢
Chorng-Shyan Chern
口試委員: 范國泰
許榮木
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 93
中文關鍵詞: 鋰離子電池聚丙烯腈丙烯酸酯共聚物固態高分子電解質
外文關鍵詞: Poly-acrylonitrile, NCM 622, Solid-state Polymer Electrolytes, LFP
相關次數: 點閱:227下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


摘要 i ABSTRACT ii ACKNOWLEDGEMENT iii TABLE OF CONTENT iv LIST OF TABLES vi LIST OF FIGURES vii CHAPTER 1 1 1.1. Background 1 1.2. Objectives 6 CHAPTER 2 7 2.1. Battery types 7 2.2. Electrolytes 8 2.3. Solid polymer electrolytes 10 2.3.1. Polycarbonate-based SPEs 11 2.3.2. Poly (ethylene oxide)-based SPEs 12 2.3.3. Polysiloxane-based SPEs 15 2.4. Composite polymer electrolytes 17 2.4.1. Plastic crystal-based CPEs 18 2.4.2. Composite polymer electrolytes with inert oxide ceramics 21 CHAPTER 3 24 3.1. Materials 24 3.2. Equipment and instruments 25 3.3. Experimental procedures 26 3.3.1. Synthesis of copolymer AN and AC 27 3.3.2. Cell preparation for Electrochemical impedance spectroscopy (EIS) measurements 28 3.3.3. Cell preparation for Linear sweep voltammetry (LSV) measurements 29 3.3.4. Cell preparation for Ion transference number cell (ITN) measurements 30 3.3.5. Cathode preparation 31 3.3.6. Lithium-ion battery cell preparation 32 3.4. Polymerization mechanism 33 3.5. Characterization techniques 34 3.5.1. DSC 35 3.5.2. TGA 35 3.5.3. FTIR 36 3.5.4. GPC 36 3.6. Calculation 37 3.6.1. Ionic conductivity 37 3.6.2. Ion transference number 38 3.6.3. Solid-state battery 39 CHAPTER 4 40 4.1. Characterization of Copolymer AN-co-acrylate 40 4.1.1. FTIR 40 4.1.2. DSC 41 4.1.3. TGA 43 4.1.4. GPC 45 4.2. Electrochemical property of copolymer AN-co-acrylate 48 4.2.1. Ionic conductivity 48 4.2.2. Oxidation stability 58 4.2.3. Ion transference number 60 4.3. Solid-state Li-ion battery 65 CONCLUSION 72 REFERENCES 74

1. Jeong G, Kim Y-U, Kim H, Kim Y-J, Sohn H-J. Prospective materials and applications for Li secondary batteries. Energy & Environmental Science. 2011;4(6):1986-2002.
2. Hussein AA-H, Batarseh I. A review of charging algorithms for nickel and lithium battery chargers. IEEE Transactions on Vehicular Technology. 2011;60(3):830-8.
3. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science. 2011;4(9):3243-62.
4. Tan S-J, Zeng X-X, Ma Q, Wu X-W, Guo Y-G. Recent advancements in polymer-based composite electrolytes for rechargeable lithium batteries. Electrochemical Energy Reviews. 2018;1(2):113-38.
5. Rivera-Barrera JP, Muñoz-Galeano N, Sarmiento-Maldonado HO. SoC estimation for lithium-ion batteries: Review and future challenges. Electronics. 2017;6(4):102.
6. Chen J, Ouyang Q, Xu C, Su H. Neural network-based state of charge observer design for lithium-ion batteries. IEEE Transactions on Control Systems Technology. 2017;26(1):313-20.
7. Abouimrane A, Davidson I. Solid electrolyte based on succinonitrile and LiBOB: interface stability and application in lithium batteries. Journal of the Electrochemical Society. 2007;154(11):A1031.
8. Peng Z, Linlin L, Dannong H, Yuping W, Shimizu M. Research progress of gel polymer electrolytes for lithium ion batteries. Acta Polymerica Sinica. 2011(2):125-31.
9. Yue L, Ma J, Zhang J, Zhao J, Dong S, Liu Z, et al. All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Materials. 2016;5:139-64.
10. Qiu W, Yang Q, Ma X-h, Fu Y, Zong X. Research on PEO-based dry solid polymer electrolytes for rechargeable lithium batteries. Chin J Power Sources. 2004;28:440-8.
11. Srivastava N, Tiwari T. New trends in polymer electrolytes: a review. e-Polymers. 2009;9(1).
12. Fergus JW. Ceramic and polymeric solid electrolytes for lithium-ion batteries. Journal of Power Sources. 2010;195(15):4554-69.
13. Liu J, Xu J, Lin Y, Li J, Lai Y, Yuan C, et al. All-solid-state lithium ion battery: Research and industrial prospects. Acta Chim Sin. 2013;71:869-78.
14. Osada I, de Vries H, Scrosati B, Passerini S. Ionic‐liquid‐based polymer electrolytes for battery applications. Angewandte Chemie International Edition. 2016;55(2):500-13.
15. Zhang Q, Liu K, Ding F, Liu X. Recent advances in solid polymer electrolytes for lithium batteries. Nano Research. 2017;10(12):4139-74.
16. Zhong X, Wang L. Compositions, structures and properties of polymer electrolytes for lithium ion battery. Progress in Chemistry. 2005;17(02):248.
17. Yarmolenko O, Khatmullina K, Tulibaeva G, Bogdanova L, Shestakov A. Towards the mechanism of Li+ ion transfer in the net solid polymer electrolyte based on polyethylene glycol diacrylate–LiClO 4. Journal of Solid State Electrochemistry. 2012;16(10):3371-81.
18. Florjańczyk Z, Zygadło-Monikowska E, Wieczorek W, Ryszawy A, Tomaszewska A, Fredman K, et al. Polymer-in-salt electrolytes based on acrylonitrile/butyl acrylate copolymers and lithium salts. The Journal of Physical Chemistry B. 2004;108(39):14907-14.
19. Xiao R, Li H, Chen L. High-throughput design and optimization of fast lithium ion conductors by the combination of bond-valence method and density functional theory. Scientific reports. 2015;5(1):1-11.
20. Tong Y, Lyu H, Xu Y, Thapaliya BP, Li P, Sun X-G, et al. All-solid-state interpenetrating network polymer electrolytes for long cycle life of lithium metal batteries. Journal of Materials Chemistry A. 2018;6(30):14847-55.
21. Huang S, Cui Z, Qiao L, Xu G, Zhang J, Tang K, et al. An in-situ polymerized solid polymer electrolyte enables excellent interfacial compatibility in lithium batteries. Electrochimica Acta. 2019;299:820-7.
22. Shim J, Kim HJ, Kim BG, Kim YS, Kim D-G, Lee J-C. 2D boron nitride nanoflakes as a multifunctional additive in gel polymer electrolytes for safe, long cycle life and high rate lithium metal batteries. Energy & Environmental Science. 2017;10(9):1911-6.
23. Karuppasamy K, Kim H-S, Kim D, Vikraman D, Prasanna K, Kathalingam A, et al. An enhanced electrochemical and cycling properties of novel boronic Ionic liquid based ternary gel polymer electrolytes for rechargeable Li/LiCoO 2 cells. Scientific reports. 2017;7(1):1-11.
24. Ding W, Wei C, Wang S, Zou L, Gong Y, Liu Y, et al. Preparation and Properties of a High-Performance EOEOEA-Based Gel-Polymer-Electrolyte Lithium Battery. Polymers. 2019;11(8):1296.
25. Amaral FA, Dalmolin C, Canobre SC, Bocchi N, Rocha-Filho RC, Biaggio SR. Electrochemical and physical properties of poly (acrylonitrile)/poly (vinyl acetate)-based gel electrolytes for lithium ion batteries. Journal of power sources. 2007;164(1):379-85.
26. Budde-Meiwes H, Drillkens J, Lunz B, Muennix J, Rothgang S, Kowal J, et al. A review of current automotive battery technology and future prospects. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2013;227(5):761-76.
27. Van den Bossche P, Vergels F, Van Mierlo J, Matheys J, Van Autenboer W. SUBAT: An assessment of sustainable battery technology. Journal of power sources. 2006;162(2):913-9.
28. Aurbach D, Talyosef Y, Markovsky B, Markevich E, Zinigrad E, Asraf L, et al. Design of electrolyte solutions for Li and Li-ion batteries: a review. Electrochimica acta. 2004;50(2-3):247-54.
29. Cho YG, Hwang C, Cheong DS, Kim YS, Song HK. Gel/solid polymer electrolytes characterized by in situ gelation or polymerization for electrochemical energy systems. Advanced materials. 2019;31(20):1804909.
30. Yao P, Yu H, Ding Z, Liu Y, Lu J, Lavorgna M, et al. Review on polymer-based composite electrolytes for lithium batteries. Frontiers in chemistry. 2019;7:522.
31. Choi N-S, Lee YM, Park JH, Park J-K. Interfacial enhancement between lithium electrode and polymer electrolytes. Journal of power sources. 2003;119:610-6.
32. Kim JG, Son B, Mukherjee S, Schuppert N, Bates A, Kwon O, et al. A review of lithium and non-lithium based solid state batteries. Journal of Power Sources. 2015;282:299-322.
33. Evans J, Vincent CA, Bruce PG. Electrochemical measurement of transference numbers in polymer electrolytes. Polymer. 1987;28(13):2324-8.
34. Ibrahim S, Yassin MM, Ahmad R, Johan MR. Effects of various LiPF 6 salt concentrations on PEO-based solid polymer electrolytes. Ionics. 2011;17(5):399-405.
35. Silva MM, Barros SC, Smith MJ, MacCallum JR. Characterization of solid polymer electrolytes based on poly (trimethylenecarbonate) and lithium tetrafluoroborate. Electrochimica acta. 2004;49(12):1887-91.
36. Smith MJ, Silva MM, Cerqueira S, MacCallum JR. Preparation and characterization of a lithium ion conducting electrolyte based on poly (trimethylene carbonate). Solid State Ionics. 2001;140(3-4):345-51.
37. Sun B, Mindemark J, Edström K, Brandell D. Polycarbonate-based solid polymer electrolytes for Li-ion batteries. Solid State Ionics. 2014;262:738-42.
38. Okumura T, Nishimura S. Lithium ion conductive properties of aliphatic polycarbonate. Solid State Ionics. 2014;267:68-73.
39. Mindemark J, Törmä E, Sun B, Brandell D. Copolymers of trimethylene carbonate and ε-caprolactone as electrolytes for lithium-ion batteries. Polymer. 2015;63:91-8.
40. Peng B, Yao Y, Chen Q, Hu B. Solid-State High-Resolution NMR Studies on PEO-Based Crystalline Solid Polymer Electrolytes for Lithium-Ion Battery. Annual Reports on NMR Spectroscopy. 2015;85:1-26.
41. Marzantowicz M, Dygas J, Krok F, Florjańczyk Z, Zygadło-Monikowska E. Influence of crystalline complexes on electrical properties of PEO: LiTFSI electrolyte. Electrochimica acta. 2007;53(4):1518-26.
42. Bouchet R, Maria S, Meziane R, Aboulaich A, Lienafa L, Bonnet J-P, et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nature materials. 2013;12(5):452-7.
43. Porcarelli L, Gerbaldi C, Bella F, Nair JR. Super soft all-ethylene oxide polymer electrolyte for safe all-solid lithium batteries. Scientific reports. 2016;6(1):1-14.
44. Soo PP, Huang B, Jang YI, Chiang YM, Sadoway DR, Mayes AM. Rubbery block copolymer electrolytes for solid‐state rechargeable lithium batteries. Journal of the Electrochemical Society. 1999;146(1):32.
45. Rolland J, Poggi E, Vlad A, Gohy J-F. Single-ion diblock copolymers for solid-state polymer electrolytes. Polymer. 2015;68:344-52.
46. HILL RG. Biomedical polymers. Biomaterials, artificial organs and tissue engineering: Elsevier; 2005. p. 97-106.
47. Zhang Z, Sherlock D, West R, West R, Amine K, Lyons LJ. Cross-linked network polymer electrolytes based on a polysiloxane backbone with oligo (oxyethylene) side chains: synthesis and conductivity. Macromolecules. 2003;36(24):9176-80.
48. Grünebaum M, Hiller MM, Jankowsky S, Jeschke S, Pohl B, Schürmann T, et al. Synthesis and electrochemistry of polymer based electrolytes for lithium batteries. Progress in Solid State Chemistry. 2014;42(4):85-105.
49. Oh B, Vissers D, Zhang Z, West R, Tsukamoto H, Amine K. New interpenetrating network type poly (siloxane-g-ethylene oxide) polymer electrolyte for lithium battery. Journal of power sources. 2003;119:442-7.
50. Kang Y, Lee W, Suh DH, Lee C. Solid polymer electrolytes based on cross-linked polysiloxane-g-oligo (ethylene oxide): ionic conductivity and electrochemical properties. Journal of power sources. 2003;119:448-53.
51. Lin Y, Li J, Lai Y, Yuan C, Cheng Y, Liu J. A wider temperature range polymer electrolyte for all-solid-state lithium ion batteries. RSC advances. 2013;3(27):10722-30.
52. Florjańczyk Z, Marcinek M, Wieczorek W, Langwald N. Review of PEO based composite polymer electrolytes. Polish Journal of Chemistry. 2004;78(9):1279-304.
53. Ha H-J, Kwon YH, Kim JY, Lee S-Y. A self-standing, UV-cured polymer networks-reinforced plastic crystal composite electrolyte for a lithium-ion battery. Electrochimica acta. 2011;57:40-5.
54. Fan LZ, Hu YS, Bhattacharyya AJ, Maier J. Succinonitrile as a versatile additive for polymer electrolytes. Advanced Functional Materials. 2007;17(15):2800-7.
55. Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chemical reviews. 2014;114(23):11503-618.
56. Alarco P-J, Abu-Lebdeh Y, Abouimrane A, Armand M. The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors. Nature materials. 2004;3(7):476-81.
57. Fan L-Z, Maier J. Composite effects in poly (ethylene oxide)–succinonitrile based all-solid electrolytes. Electrochemistry communications. 2006;8(11):1753-6.
58. Ha H-J, Kil E-H, Kwon YH, Kim JY, Lee CK, Lee S-Y. UV-curable semi-interpenetrating polymer network-integrated, highly bendable plastic crystal composite electrolytes for shape-conformable all-solid-state lithium ion batteries. Energy & Environmental Science. 2012;5(4):6491-9.
59. Kim S-H, Choi K-H, Cho S-J, Park J-S, Cho KY, Lee CK, et al. A shape-deformable and thermally stable solid-state electrolyte based on a plastic crystal composite polymer electrolyte for flexible/safer lithium-ion batteries. Journal of Materials Chemistry A. 2014;2(28):10854-61.
60. Zhou D, He YB, Liu R, Liu M, Du H, Li B, et al. In Situ Synthesis of a Hierarchical All‐Solid‐State Electrolyte Based on Nitrile Materials for High‐Performance Lithium‐Ion Batteries. Advanced Energy Materials. 2015;5(15):1500353.
61. Choi KH, Cho SJ, Kim SH, Kwon YH, Kim JY, Lee SY. Thin, deformable, and safety‐reinforced plastic crystal polymer electrolytes for high‐performance flexible lithium‐ion batteries. Advanced Functional Materials. 2014;24(1):44-52.
62. Sheng O, Jin C, Luo J, Yuan H, Huang H, Gan Y, et al. Mg2B2O5 nanowire enabled multifunctional solid-state electrolytes with high ionic conductivity, excellent mechanical properties, and flame-retardant performance. Nano letters. 2018;18(5):3104-12.
63. Ebewele RO. Polymer science and technology: CRC press; 2000.
64. Bruce PG, Vincent CA. Steady state current flow in solid binary electrolyte cells. Journal of electroanalytical chemistry and interfacial electrochemistry. 1987;225(1-2):1-17.
65. Bokria JG, Schlick S. Spatial effects in the photodegradation of poly (acrylonitrile–butadiene–styrene): a study by ATR-FTIR. Polymer. 2002;43(11):3239-46.
66. Florjańczyk Z, Zygadło-Monikowska E, Affek A, Tomaszewska A, Łasińska A, Marzantowicz M, et al. Polymer electrolytes based on acrylonitrile–butyl acrylate copolymers and lithium bis (trifluoromethanesulfone) imide. Solid state ionics. 2005;176(25-28):2123-8.
67. Lu Z, Yang L, Guo Y. Thermal behavior and decomposition kinetics of six electrolyte salts by thermal analysis. Journal of power sources. 2006;156(2):555-9.
68. Ibrahim S, Johan MR. Thermolysis and conductivity studies of poly (ethylene oxide)(PEO) based polymer electrolytes doped with carbon nanotube. Int J Electrochem Sci. 2012;7:2596-615.
69. Balo L, Gupta H, Singh SK, Singh VK, Tripathi AK, Srivastava N, et al. Development of gel polymer electrolyte based on LiTFSI and EMIMFSI for application in rechargeable lithium metal battery with GO-LFP and NCA cathodes. Journal of Solid State Electrochemistry. 2019;23(8):2507-18.
70. Tamilarasan P, Ramaprabhu S. Graphene based all-solid-state supercapacitors with ionic liquid incorporated polyacrylonitrile electrolyte. Energy. 2013;51:374-81.
71. Zhang X, Xu B-Q, Lin Y-H, Shen Y, Li L, Nan C-W. Effects of Li6. 75La3Zr1. 75Ta0. 25O12 on chemical and electrochemical properties of polyacrylonitrile-based solid electrolytes. Solid State Ionics. 2018;327:32-8.
72. Zhao Y, Bai Y, Li W, Liu A, An M, Bai Y, et al. Semi closed coordination structure polymer electrolyte combined in situ interface engineering for lithium batteries. Chemical Engineering Journal. 2020;394:124847.

無法下載圖示 全文公開日期 2031/08/04 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE