簡易檢索 / 詳目顯示

研究生: 陳冠瑋
Kuan-Wei Chen
論文名稱: 具整合式矩陣變壓器之高頻LLC諧振轉換器
High Frequency LLC Resonant Converter with Integrated Matrix Transformer
指導教授: 謝耀慶
Yao-Ching Hsieh
口試委員: 謝耀慶
Yao-Ching Hsieh
邱煌仁
Huang-Jen Chiu
林景源
Jing-Yuan Lin
鄭宏良
Hung-Liang Cheng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 89
中文關鍵詞: 矩陣式變壓器磁通抵銷氮化鎵高功率密度鐵心整合
外文關鍵詞: matrix transformer, flux cancellation, gallium nitride, high power density, magnetic integration
相關次數: 點閱:422下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

提升切換頻率來降低磁性元件以及濾波元件的大小,藉此提升產品的功率密度已是產業的趨勢。但是以往受限於矽元件的特性,大幅限制了電路的切換頻率,近來氮化鎵元件的興起使得電路可以操作於更高的切換頻率。
以高降壓比LLC型串聯諧振式轉換器的整體損耗來說,磁性元件佔了大多數,且傳統的變壓器做工複雜,不易自動化。所以本文採用矩陣式變壓器,一二次側繞組只需4層的PCB即可達成。且採用磁通抵銷的概念來有效降低鐵心的磁滯損耗,並探討不同方式的繞線配置方式對電路的影響,最後採取整流元件以及輸出電容可以直接整合在二次側繞組上的方式。最後實作出一台切換頻率1 MHz,380 V輸入轉12 V 輸出的700 W,LLC型串聯諧振轉換器,且電路體積只有39.2 cm3。


Pushing switching frequency higher to reduce magnetic components size and output rectifiers is the trend. Gallium nitride power devices are set to take over as silicon power devices reach their limits. This new material allow circuit operating in higher frequency.
For high-step-down LLC-type series resonant converters, the transformer loss dominates the whole converter loss, thus, the transformer design is very important. The traditional transformer structure is difficultly adapted to an automatic manufacturing process. This thesis use matrix transformer and flux cancellation. Therefore, one magnetic core with four-layer PCB windings is adopted. Different secondary and primary windings structure is investigated in this thesis. Finally, synchronous rectifiers and output capacitors are integrated into secondary windings. A 1MHz 380 V/12 V 700 W LLC-type series resonant converter with volume 39.2 cm3 is built to verify the proposed structure.

摘 要 i Abstract ii 誌 謝 iii 目 錄 iv 圖索引 vi 表索引 ix 第一章 緒論 1 1.1研究動機與目的 1 1.2內文編排方式 4 第二章 氮化鎵元件介紹與選用 5 2.1氮化鎵電晶體特性與結構 5 2.1.1氮化鎵電晶體特性 6 2.1.2氮化鎵電晶體結構 7 2.2雙脈波元件測試與選用 10 第三章 整合式矩陣變壓器結構分析與設計 16 3.1傳統串聯諧振變壓器結構 16 3.2改善傳統串聯諧振變壓器 23 3.2.1改善傳統串聯諧振變壓器之線圈 23 3.2.2改善傳統串聯諧振變壓器之二次側結構 25 3.3矩陣式變壓器 27 3.3.1矩陣式變壓器演進 28 3.3.2矩陣式變壓器鐵心整合 33 3.4新式矩陣變壓器 40 3.4.1新式矩陣變壓器鐵心整合 40 3.4.2新式矩陣變壓器鐵心優化 44 第四章 半橋串聯諧振式參數分析與設計 47 4.1變壓器設計 47 4.2諧振槽與死域區間設計 52 第五章 電路實作與結果 64 5.1實測波形 65 5.2實測數據以及實測電路 67 第六章 結論與未來展望 70 6.1結論 70 6.2未來展望 71 參考文獻 72

[1] C. Fei, F. C. Lee, and Q. Li, “High-efficiency high-power-density LLC converter with an integrated planar matrix transformer for high output current applications,” IEEE Trans. Ind. Electron., vol. PP, no.99, pp.1-1, Feb. 2017.
[2] D. Huang, S. Ji, and F. C. Lee, "LLC resonant converter with matrix transformer," IEEE Trans. on Power Electron., vol. 29, no. 8, pp. 4339-4347, Aug. 2014.
[3] Electric energy consumption. [Online]. Available:
https://en.wikipedia.org/wiki/Electric_energy_consumption
[4] International energy consumption. [Online]. Available:
https://www.eia.gov/beta/international/analysis.cfm
[5] Nuclear power plant. [Online]. Available:
https://www.eia.gov/tools/faqs/faq.php?id=104&t=3
[6] G. B. Koo, G. W. Moon, and M. J. Youn, “New zero-voltage-switching phase-shift full-bridge converter with low conduction losses,” IEEE Trans. Power Electron., vol. 52, no. 1, pp. 228-235, Feb. 2005.
[7] R. Redl, N. O. Sokal, and L. Balogh, “A novel soft switching full bridge DC/DC converter: analysis, design considerations, and experimental results at 1.5 kW, 100 kHz,” in IEEE PESC Rec., vol. 6, no. 3, pp. 162-172, Jul. 1991.
[8] B. Y. Chen and Y.-S. Lai, “Switching control technique of phase-shift controlled full-bridge converter to improve efficiency under light-load and standby conditions without additional auxiliary components,” IEEE Trans. Power Electron., vol. 25, no. 4, pp. 1001-1012, Apr. 2010.
[9] B. Yang, F. C. Lee, A. J. Zhang, and G. Huang, “LLC resonant converter for front end DC/DC conversion,” in Proc. IEEE APEC, 2002, pp. 1108-1112.
[10] B. Yang, Y. Ren, and F. C. Lee, “Integrated magnetic for LLC resonant converter,” in Proc. IEEE APEC, 2002, pp. 346-351.
[11] Bo Yang, “Topology investigation for front end DC/DC power conversion for distributed power system,” Ph.D. dissertation, Dept. ECE, Virginia Tech, Blacksburg, VA, USA, 2003, pp.66-90.
[12] B.Jayant Baliga , “Power semiconductor device figure of merit for high-frequency applications, IEEE Electron Device Letters, Vol. 10, No. 10, pp. 455-457, Oct. 1989.
[13] J. Kuzmik, “Power electronics on InAlN/(In)GaN: prospect for a record performance, ” IEEE Electron Device Lett., vol. 22, no. 11, pp. 510-512, Nov. 2001.
[14] Z. Y. Liu, X.C Huang, F. C. Lee, and Q. Li, “Simulation model development and verification for high voltage GaN HEMT in cascode structure,” in Proc. ECCE, 2013, pp. 3579-3586.
[15] X. C. Huang, Z. Y. Liu, Q. Li, and F. C. Lee, ”Evaluation and application of 600V GaN HEMT in cascode structure,” in Proc. Applied Power Electronics Conference and Exposition (APEC), 2013, pp. 1279-1286.
[16] D. Fu, F. C. Lee, and W. Shuo, “Investigation on transformer design of high frequency high efficiency DC-DC converters,” in Proc. Appl. Power Electron. Conf. Expo., 2010, pp. 940-947.
[17] C. Yan, F. Li, J. Zeng, T. Liu, and J. Ying, “A novel transformer structure for high power, high frequency converter,” in Proc. IEEE PESC, 2007, pp. 214-218.
[18] D. Reusch and F. C. Lee, “High frequency bus converter with integrated matrix transformers for CPU and telecommunications applications,” in Proc. IEEE ECCE, 2010, pp. 2446-2450.
[19] Edward Herbert, “Design and application of matrix transformers and symmetrical converters,” a tutorial presented at the High Frequency Power Conversion Conference '90, Santa Clara, CA, 1990.
[20] D. Reusch and F. C Lee, “High frequency bus converter with low loss integrated matrix transformer,” in Proc. IEEE APEC, 2012, pp. 1392-1397.
[21] M. Mu and F. C. Lee, “Design and optimization of a 380V-12V high-frequency, high-current LLC converter with GaN devices and planar matrix transformers,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 3, pp. 854-862, Sept. 2016.
[22] M. Mu and F. C. Lee, “Design and optimization of a 380V-12V high-frequency, high-current LLC converter with GaN devices and planar matrix transformers,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 3, pp. 854-862, Sept. 2016.
[23] J. L. Hudgins, G. S. Simin, E. Santi, and M. A. Khan, “An assessment of wide bandgap semiconductors for power devices, “IEEE Transaction on Power Electronics, Vol. 18, No. 3, pp. 907-914, May 2003.
[24] P. L. Dowell, “Effects of eddy currents in transformer windings,” Proc. Inst. Elect. Eng., vol. 113, no. 8, pp. 1387-1394, Aug. 1966.
[25] X. Huang, T. Liu, B. Li, F. C. Lee, and Q. Li "Evaluation and applications of 600 V/650 V enhancement-mode GaN devices," in Prof. IEEE 3rd Workshop on Wide bandgap Power Devices and Applications, Blacksburg, VA, 2015, pp. 113-118.
[26] X. Huang, W. Du, F. C. Lee, Q. Li, and Z. Liu, “Avoiding Si MOSFET avalanche and achieving zero-voltage-switching for cascode GaN devices,” IEEE Trans. on Power Electron., vol. 31, no. 1, pp.593-600, Jan. 2016.
[27] E. A. Jones, F. Wang, D. Costinett, Z. Zhang, B. Guo, B. Liu, and R. Ren, “Characterization of an enhancement-mode 650V GaN HFET,” in proc. IEEE ECCE, 2015, pp. 400-407.
[28] Y. A. Liu, “High efficiency optimization of LLC resonant converter for wide load range,” Master thesis, Dept. Electr. Comput. Eng., Virginia Polytechnic Inst. State Univ., Blacksburg, VA, USA, 2007, pp.66-80.
[29] GaN Systems. (2017). GS66508B Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet [Online]. Available: http://www.gansystems.com/datasheets/GS66508B%20DS%20Rev%20170321.pdf

QR CODE