簡易檢索 / 詳目顯示

研究生: 吳孟哲
Meng-Jhe Wu
論文名稱: 矩陣轉換器驅動內藏式永磁同步電動機的最大轉矩/安培控制
Implementation of Maximum Torque/Ampere Control for Matrix Converter IPMSM Drive Systems
指導教授: 劉添華
Tian-Hua Liu
口試委員: 李永勳
Yuang-Shung Lee
楊勝明
Sheng-Ming Yang
楊宗銘
Chung-Ming Young
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 113
中文關鍵詞: 高速弱磁控制最大轉矩/安培控制矩陣轉換器
外文關鍵詞: field-weakening control, maximum torque/ampere control, matrix converter
相關次數: 點閱:175下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文探討矩陣轉換器為基礎的內藏式永磁同步電動機驅動系統。當電動機運轉在低、中轉速時,由數位信號處理器計算電動機的機械功率高頻分量,達成最大轉矩/安培控制,文中設計一個模糊邏輯搜尋法則,得到最大轉矩/安培時的電流超前角。當電動機運轉在高轉速時,利用電壓限制邊界作為依據,控制電流超前角,執行高速弱磁控制,有效延伸電動機的轉速。
本文中使用數位信號處理器TMS320LF2407A以及高複雜度可程式化邏輯元件EPM570GT100C5作為控制核心,執行相關控制法則。實測結果說明本文所提方法具有良好的性能,包括寬廣的控速範圍以及良好的暫態響應、加載能力與追蹤能力。


This thesis proposes a matrix converter-based interior permanent magnet synchronous motor drive system. When the motor is operated at a low speed to medium speed range, the digital signal processor computes the high frequency component of the mechanical power. Then the maximum torque/ampere control can be achieved. A fuzzy logic searching algorithm is designed to obtain the advance current angle. On the other hand, when the motor is operated at a high speed range, the voltage constraint is used to determine the advance current angle for executing the field-weakening control so that the operating speed range can be extended.
A digital signal processor, TMS320LF2407A, and a complex programmable logic device, EPM570GT100C5, are both used as a control center to execute the control algorithms. Experimental results show the proposed system has good performance, including wide operating speed range and good transient response, load rejection ability, and tracking ability.

中文摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 XI 符號索引 XII 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.3 研究目的 6 1.4 論文大綱 7 第二章 永磁同步電動機 8 2.1 簡介 8 2.2 結構及特性 8 2.3 數學模型 12 第三章 矩陣轉換器 19 3.1 簡介 19 3.2 電路架構 21 3.3 換向方法 24 3.4 功率元件切換原理 26 3.4.1直接轉換型切換 29 3.4.2間接轉換型切換 32 第四章 閉迴路驅控系統 41 4.1 簡介 41 4.2 內藏式電動機的最大轉矩/安培控制 42 4.2.1基本原理 42 4.2.2最大轉矩/安培控制方法 47 4.2.3間接式高頻信號注入最大轉矩/安培控制 50 4.2.4電流超前角的控制方法 55 4.3 內藏式電動機的高速控制 59 4.3.1基本原理 59 4.3.2高速弱磁控制方法 61 第五章 系統研製 64 5.1 簡介 64 5.2 硬體電路 67 5.2.1矩陣轉換器 67 5.2.2驅動電路 69 5.2.3緩衝級電路 71 5.2.4偵測電路 72 5.2.5數位信號處理器 74 5.2.6高複雜度可程式化邏輯與換向電路 75 5.3 軟體程式設計 77 5.3.1主程式 77 5.3.2中斷服務程式 79 5.3.3高複雜度可程式化邏輯元件程式設計 81 第六章 實測結果 82 6.1 簡介 82 6.2 實測結果 84 第七章 結論與建議 106 參考文獻 107

[1] R. Mitova, R. Ghosh, U. Mhaskar, D. Klikic, M. X. Wang, and A. Dentella, “ Investigations of 600-V GaN HEMT and GaN diode for power converter applications,” IEEE Transactions on Power Electronics, vol. 29, no. 5, pp. 2441-2452, May 2014.
[2] Y. Gu and D. Zhang, “Interleaved boost converter with ripple cancellation network,” IEEE Transactions on Power Electronics, vol. 28, no. 8, pp. 3860-3869, Aug. 2013.
[3] X. Xie, C. Zhao, Q. Lu, and S. Liu, “A novel integrated buck-flyback nonisolated PFC converter with high power factor,” IEEE Transactions on Industrial Electronics, vol. 60, no. 12, pp. 5603-5612, Dec. 2013.
[4] B. K. Bose, “Power electronics and motion control-technology status and recent trends,” IEEE Transactions on Industry Applications, vol. 29, no. 5, pp. 902-909, Sep./Oct. 1993.
[5] S. S. Williamson, A. Emadi, and K. Rajashekara, “Comprehensive efficiency modeling of electric traction motor drives for hybrid electric vehicle propulsion applications,” IEEE Transactions on Vehicular Technology, vol. 56, no. 4, pp. 1561-1572, July 2007.
[6] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Transactions on Transportation Electrification, vol. 1, no. 3, pp. 245-254, Oct. 2015.
[7] C. B. Jacobina, E. C. dos Santos, M. B. de Rossiter Correa, and E. R. C. da Silva, “AC motor drives with a reduced number of switches and boost inductors,” IEEE Transactions on Industry Applications, vol. 43, no. 1, pp. 30-39, Jan./Feb. 2007.
[8] A. Gonzalez, C. Hernandez, and M. A. Arjona, “A novel high-efficiency parallel-winding connection for a three-phase induction motor fed by a single-phase power supply,” IEEE Transactions on Energy Conversion, vol. 29, no. 2, pp. 269-277, June 2014.
[9] K. Lu, P. O. Rasmussen, S. J. Watkins, and F. Blaabjerg, “A new low-cost hybrid switched reluctance motor for adjustable-speed pump applications,” IEEE Transactions on Industry Applications, vol. 47, no. 1, pp. 314-321, Jan./Feb. 2011.
[10] B. M. Ebrahimi and J. Faiz, “Configuration impacts on eccentricity fault detection in permanent magnet synchronous motors,” IEEE Transactions on Magnetics, vol. 48, no. 2, pp. 903-906, Feb. 2012.
[11] M. Sanada, K. Hiramoto, S. Morimoto, and Y. Takeda, “Torque ripple improvement for synchronous reluctance motor using an asymmetric flux barrier arrangement,” IEEE Transactions on Industry Applications, vol. 40, no. 4, pp. 1076-1082, July/Aug. 2004.
[12] M. J. Melfi, S. D. Rogers, S. Evon, and B. Martin, “Permanent-magnet motors for energy savings in industrial applications,” IEEE Transactions on Industry Applications, vol. 44, no. 5, pp. 1360-1366, Sep./Oct. 2008.

[13] J. Wang, X. Yuan, and K. Atallah, “Design optimization of a surface-mounted permanent-magnet motor with concentrated windings for electric vehicle applications,” IEEE Transactions on Vehicular Technology, vol. 62, no. 3, pp. 1053-1064, Mar. 2013.
[14] H. W. Cho, K. J. Ko, J. Y. Choi, H. J. Shin, and S. M. Jang, “Rotor natural frequency in high-speed permanent-magnet synchronous motor for turbo-compressor application,” IEEE Transactions on Magnetics, vol. 47, no. 10, pp. 4258-4261, Oct. 2011.
[15] P. Kshirsagar, R. P. Burgos, J. Jang, A. Lidozzi, F. Wang, and S. K. Sul, “Implementation and sensorless vector-control design and tuning strategy for SMPM machines in fan-type applications,” IEEE Transactions on Industry Applications, vol. 48, no. 6, pp. 2402-2413, Nov./Dec. 2012.
[16] D. C. Lee and Y. S. Kim, “Control of single-phase-to-three-phase AC/DC/AC PWM converters for induction motor drives,” IEEE Transactions on Industrial Electronics, vol. 54, no. 2, pp. 797-804, Apr. 2007.
[17] P. Wheeler, J. Rodriguez, J. Clare, L. Empringham, and A. Weinstein, “Matrix converters: A technology review,” IEEE Transactions on Industrial Electronics, vol. 49, no. 2, pp. 276–288, Apr. 2002.
[18] S. Kim, S. K. Sul, and T. A. Lipo, “AC/AC power conversion based on matrix converter topology with unidirectional switches,” IEEE Transactions on Industry Applications, vol. 36, no. 1, pp. 139-145, Jan./Feb. 2000.

[19] L. Gyugyi and B. R. Pelly, Static Power Frequency Chargers:Theory, Performance, and Application, New York:Wiley, 1976.
[20] A. Alesina and M. G. B. Venturini, “Analysis and Design of optimum-amplitude nine-switch direct AC-AC converters,” IEEE Transactions on Power Electronics, vol. 4, no. 1, pp. 101-112, Jan. 1989.
[21] S. Bouchiker, G. A. Capolino, and M. Poloujadoff, “Vector control of a permanent-magnet synchronous motor using AC-AC matrix converter,” IEEE Transactions on Power Electronics, vol. 13, no. 6, pp. 1089-1099, Nov. 1998.
[22] S. Muller, U. Ammann, and S. Rees, “New time-discrete modulation scheme for matrix converters ,” IEEE Transactions on Industrial Electronics, vol. 52, no. 6, pp. 1607-1615, Dec. 2005.
[23] M. Rivera, C. Rojas, J. Rodriguez, and J. Espinoza, “Methods of source current reference generation for predictive control in a direct matrix converter,” IET Power Electronics, vol. 6, no. 5, pp. 894-901, May 2013.
[24] D. Casadei, G. Serra, A. Tani, and L. Zarri, “Optimal use of zero vectors for minimizing the output current distortion in matrix converters ,” IEEE Transactions on Industrial Electronics, vol. 56, no. 2, pp. 326-336, Feb. 2009.
[25] C. Klumpner and F. Blaabjerg, “Modulation method for a multiple drive system based on a two-stage direct power conversion topology with reduced input current ripple,” IEEE Transactions on Power Electronics, vol. 20, no. 4, pp. 922-929, July 2005.

[26] D. F. Chen and T. H. Liu, “Implementation of a novel matrix converter PMSM drive,” IEEE Transactions on Aerospace and Electronic Systems, vol. 37, no. 3, pp. 863-875, July 2001.
[27] S. Kim, Y. D. Yoon, and S. K. Sul, “Pulsewidth modulaion method of matrix converter for reducing output current ripple,” IEEE Transactions on Power Electronics, vol. 25, no. 10, pp. 2620-2629, Oct. 2010.
[28] C. Xia, J. Zhao, Y. Yan, and T. Shi, “A novel direct torque control of matrix converter-fed PMSM drives using duty cycle control for torque ripple reduction,” IEEE Transactions on Industrial Electronics, vol. 61, no. 6, pp. 2700-2713, June 2014.
[29] A. L. Julian and G. Oriti, “A novel clamp circuit for a regenerative rectifier using AC/AC matrix converter theory,” IEEE Transactions on Industry Applications, vol. 41, no. 1, pp. 68-74, Jan./Feb. 2005.
[30] J. Andreu, J. M. De Diego, I. M. de Alegria, J. L. Martin, and S. Ceballos, “New protection circuit for high-speed switching and start-up of a practical matrix converter,” IEEE Transactions on Industrial Electronics, vol. 55, no. 8, pp. 3100-3114, Aug. 2008.
[31] J. Itoh, I. Sato, A. Odaka, H. Ohguchi, H. Kodachi, and N. Eguchi, “A novel approach to practical matrix converter motor drive system with reverse blocking IGBT,” IEEE Transactions on Power Electronics, vol. 20, no. 6, pp. 1356-1363, Nov. 2005.
[32] D. F. Chen and T. H. Liu, “Optimal controller design for a matrix converter based surface mounted PMSM drive system,” IEEE Transactions on Power Electronics, vol. 18, no. 4, pp. 1034-1046, July 2003.
[33] S. Khwan-on, L. De Lillo, L. Empringham, and P. Wheeler, “Fault-tolerant matrix converter motor drives with fault detection of open switch faults,” IEEE Transactions on Industrial Electronics, vol. 59, no. 1, pp. 257-268, Jan. 2012.
[34] S. Kwak, “Fault-tolerant structure and modulation strategies with fault detection method for matrix converters,” IEEE Transactions on Power Electronics, vol. 25, no. 5, pp. 1201-1210, May 2010.
[35] K. B. Lee and F. Blaabjerg, “An improved DTC-SVM method for sensorless matrix converter drives using an overmodulation strategy and a simple nonlinearity compensation,” IEEE Transactions on Industrial Electronics, vol. 54, no. 6, pp. 3155-3166, Dec. 2007.
[36] A. Arias, C. A. Silva, G. M. Asher, J. C. Clare, and P. W. Wheeler, “Use of a matrix converter to enhance the sensorless control of a surface-mount permanent-magnet AC motor at zero and low frequency,” IEEE Transactions on Industrial Electronics, vol. 53, no. 2, pp. 440-449, Apr. 2006.
[37] T. Sun, J. Wang, and X. Chen, “Maximum torque per ampere (MTPA) control for interior permanent magnet synchronous machine drives based on virtual signal injection,” IEEE Transactions on Power Electronics, vol. 30, no. 9, pp. 5036-5045, Sep. 2015.
[38] T. Sun and J. Wang, “Extension of virtual-signal-injection-based MTPA control for interior permanent-magnet synchronous machine drives into the field-weakening region,” IEEE Transactions on Industrial Electronics, vol. 62, no. 11, pp. 6809-6817, Nov. 2015.

[39] P. W. Wheeler, J. C. Clare, and L. Empringham, “A vector controlled MCT matrix converter induction motor drive with minimized commutation times and enhanced waveform quality,” IEEE Industry Applications Conference, vol. 1, pp. 466-742, Oct. 2002.
[40] N. Yang, G. Luo, W. Liu, and K. Wang, “Interior permanent magnet synchronous motor control for electric vehicle using look-up table,” IEEE Power Electronics and Motion Control Conference, vol. 2, pp. 1015-1019, June 2012.
[41] Y. A. -R. I. Mohamed and T. K. Lee, “Adaptive self-tuning MTPA vector controller for IPMSM drive system,” IEEE Transactions on Energy Conversion, vol. 21, no. 3, pp. 636-644, Sep. 2006.
[42] A. Dianov, Y. K. Kim, S. J. Lee, and S. T. Lee, “Robust self-tuning MTPA algorithm for IPMSM drives,” IEEE Industrial Electronics Conference, pp. 1355-1360, Nov. 2008.
[43] S. Kim, Y. D. Yoon, S. K. Sul, and K. Ide, “Maximum torque per ampere (MTPA) control of an IPM machine based on signal injection considering inductance saturation,” IEEE Transactions on Power Electronics, vol. 28, no. 1, Jan. 2013.
[44] Texas Instruments, TMS320F/C240 DSP Controllers Peripherals Library and Specific Devices Reference Guide, 1999.
[45] Spectrum Digital, TMS320C2xx/C24x Code Composer User’s Guide, 2000.
[46] Spectrum Digital, TMS320LF2407 Evaluation Module Technical Reference, 2000.

無法下載圖示 全文公開日期 2021/08/11 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE