簡易檢索 / 詳目顯示

研究生: 王宸晟
Chen-Cheng Wang
論文名稱: 微型化合成共平面波導結構及其電路元件實現
Miniaturized Synthesized Coplanar Waveguides and its Circuit Implementation
指導教授: 馬自莊
Tzyh-Ghuang Ma
口試委員: 曾昭雄
Chao-Hsiung Tseng
鄭士康
Shyh-Kang Jeng
瞿大雄
Tah-Hsiung Chu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 110
中文關鍵詞: 共平面波導合成傳輸線慢波特性直交分合波器鼠競耦合器耦合線方向耦合器
外文關鍵詞: coplanar waveguide, synthesized transmission line, slow wave, quadrature hybrid, rat-race coupler, coupled-line directional coupler.
相關次數: 點閱:446下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出兩款新型合成共平面波導,它們乃藉由準集總元件來合成傳輸線之特性,其名稱分別為『單平面合成共平面波導』及『含背板電容合成共平面波導』。本論文詳盡討論此合成共平面波導之設計理念、傳波特性、等校集總電路模型、以及模擬與量測結果。
使用該合成共平面波導,本論文設計完成兩款直交分合波器與兩款鼠競耦合器,並對電路響應有深入之探討與表列比較。其中,以『含背板電容合成共平面波導』所完成之兩款分合波器,其電路面積皆為文獻記載中以印刷電路板製程所實現之最小型化設計。
本論文亦提出三款微型化耦合線方向耦合器,分別為側邊偶合背向耦合器、寬面耦合背向耦合器與順向耦合器。其電路響應亦有深入之探討與表列比較。為提供完整之設計參考,本論文提供基耦模態之特徵阻抗及耦合量的設計圖表。此方向耦合器之耦合量可輕易由準集總互容及對地電容進行調整。與傳統設計相比較,本論文所提出之方向耦合器皆有極小之電路面積與相當之電路響應。


We proposed two novel synthesized coplanar waveguides in this thesis. The novel designs are realized by quasi-lumped elements, and are named as the uniplanar synthesized coplanar waveguide (USCPW) and the capacitor-backed synthesized coplanar waveguide (CBSCPW). The design concepts, propagation characteristics, equivalent lumped circuit models, and simulated and measured results are carefully investigated and discussed.
Miniaturized quadrature hybrids and rat-race couplers are developed by utilizing the proposed synthesized coplanar waveguides. The circuit performances are investigated and tabulated. The proposed quadrature hybrid and rat-race coupler using the capacitor-backed synthesized coplanar waveguide feature the smallest size among the designs ever reported with printed circuit board fabrication process.
Miniaturized coupled-line directional couplers including backward-wave edge-coupled coupler, backward-wave broadside-coupled coupler, and forward-wave coupler are designed and investigated using the uniplanar synthesized coplanar waveguides. The even odd modes analysis and simulated and measured results are discussed. Design graphs are derived for easy reference. The coupling coefficients can be easily controlled by adjusting the quasi-lumped mutual capacitance and shunt-to-ground capacitance of the synthesized lines. As compared with the conventional designs, the proposed couplers feature comparable performance with extremely compact sizes as well.

摘要 I Abstract III 誌謝 V Table of Contents VII List of Figures IX List of Tables XVII Chapter 1 Introduction 1 1.1 Motivations 1 1.2 Literature Survey 2 1.3 Contribution 3 1.4 Chapters Outline 5 Chapter 2 Essentials of Synthesized Coplanar waveguides 6 2.1 Introduction 6 2.2 Uniplanar Synthesized Coplanar Waveguide 6 2.2.1 Geometry and the Equivalent Circuit Model 6 2.2.2 Simulation and measurement 10 2.2.3 Discussion 13 2.3 Capacitor-Backed Synthesized Coplanar Waveguide 14 2.3.1 Design Concept and Geometry 14 2.3.2 Equivalent Circuit Model and Design Example 15 2.3.3 Simulation and measurement 16 2.3.4 Discussion 19 2.4 Summary 20 Chapter 3 Miniaturized Hybrid Couplers 42 3.1 Introduction 42 3.2 Conventional Quadrature Hybrid and Rat-Race Coupler 43 3.3 Miniaturized Hybrid Couplers Using Uniplanar Synthesized Coplanar Waveguide 44 3.4 Miniaturized Hybrid Couplers Using Conductor-Backed Synthesized Coplanar Waveguide 48 3.5 Summary 51 Chapter 4 Miniaturized Coupled-Lines Couplers 71 4.1 Introduction 71 4.2 Fundamental of Coupled-Line Couplers 72 4.2.1 Conventional Configuration with Even Odd Mode Analysis 72 4.2.2 Backward-wave directional coupler 73 4.2.3 Forward-wave directional couplers 74 4.3 Miniaturized Edge-Coupled Directional Coupler 75 4.4 Miniaturized Broadside-Coupled Directional Coupler 80 4.5 Miniaturized Forward-Wave Directional Coupler 83 4.6 Summary 85 Chapter 5 Conclusions 105 5.1 Summary 105 5.2 Future works 106 References 107 Author 111

[1] C. P. Wen, “Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device applications,” IEEE Trans. Microwave Theory Tech., vol. MTT-17, no. 12, pp. 1087–1090, Dec. 1969.
[2] C.-W. Wang, T.-G. Ma and C.-F. Yang, “A new planar artificial transmission line and its applications to a miniaturized butler matrix,” IEEE Trans. Microwave Theory Tech., vol. 55, no. 12, pp. 2792–2801, Dec. 2007.
[3] T.-G. Ma, C.-W. Wang, R.-C. Hua, and J.-W. Tsai, “A modified quasi-Yagi antenna with a new compact microstrip-to-coplanar strip transition using artificial transmission lines,” to appear in IEEE Trans. Antennas Propagat., Sep. 2009.
[4] I. Toyoda, T. Hirota, T. Hiraoka, and T. Tokumitsu, “Multilayer MMIC branch-line coupler and broad-side coupler,” in Microwave and Millimeter-Wave Monolithic Circuits Sym. Dig., Albuquerque NM, pp. 79–82, 1-3 June 1992.
[5] Y.-C. Chiang and C.-Y. Chen, “Design of a wide-band lumped-element 3-dB quadrature coupler,” IEEE Trans. Microwave Theory Tech., vol. 49, no. 3, pp. 476–479, Mar. 2001.
[6] Y. J. Sung, C. S. Ahn and Y.-S. Kim, “Size reduction and harmonic suppression of rat-race hybrid coupler using defected ground structure,” IEEE Microwave Wireless Comp. Lett., vol. 14, no. 1, pp. 7–9, Jan. 2004.
[7] C.-C. Chen and C.-K.C. Tzuang, “Synthetic quasi-TEM meandered transmission lines for compacted microwave integrated circuits,” IEEE Trans. Microwave Theory Tech., vol. 52, no. 6, pp. 1637-1647, Jun. 2004.
[8] K. W. Eccleston and S. H. M. Ong, “Compact planar microstrip line branch-line and rat-race couplers,” IEEE Trans. Microwave Theory Tech., vol. 51, no. 10, pp. 2119-2125, Oct. 2003.
[9] P. Kangaslahti, P. Alinikula and V. Porra, “Miniaturized artificial-transmission-line monolithic millimeter-wave frequency doubler,” IEEE Trans. Microwave Theory Tech., vol. 48, no. 4, pp. 510-518, Apr. 2000.
[10] C.T. Lin, C.L. Liao, and C.H. Chen, “Finite-ground coplanar waveguide branch-line couplers, ” IEEE Microwave Wireless Comp. Lett., vol. 11, no. 3, pp. 127-129, March 2001.
[11] T. Fujii, I. Ohta, and Y. Kokubo, “Miniature broad-band CPW 3-dB branch-line couplers in slow-wave structure, ” IEICE Trans. Electron., vol. E90-C, no. 12, pp. 2245–2253, Dec. 2007.
[12] K. Hettak, G. A. Morin, and M.G. Stubbs, “Compact MMIC CPW and asymmetric CPS branch-line couplers and Wilkinson dividers using shunt and series stub loading, ” IEEE Trans. Microwave Theory Tech., vol.53, no. 5, pp.1624–1635, May 2005.
[13] C.-H. Ho, L. Fan and K. Chang, “New uniplanar coplanar waveguide hybrid-ring couplers and magic-T’s,” IEEE Trans. Microwave Theory Tech., vol. 42, no. 12, pp. 2440–2448, Dec. 1994.
[14] M. -H. Murgulescu, E. Moisan, P. Legaud, E. Penard and I. Zaquine “New wideband, 0.67λg circumference 180° hybrid ring coupler,” Electron. Lett., vol. 30, no. 4, pp. 299–300, Feb. 1994.
[15] B. R. Heimer, L. Fan and K. Chang, “Wide-band reduced-size uniplanar magic-T, hybrid-ring, and de ronde’s CPW-slot couplers ,” IEEE Trans. Microwave Theory Tech., vol. 43, no. 12, pp. 2749–2758, Dec. 1995.
[16] B. R. Heimer, L. Fan, C.-H. Ho, S. Kanamaluru and K. Chang, “Uniplanar hybrid couplers using asymmetrical coplanar striplines,” IEEE Trans. Microwave Theory Tech., vol. 45, no. 12, pp. 2234–2240, Dec. 1997.
[17] T. Hirota, A. Minakawa and M. Muraguchi, “Reduced-size branch line and rat-race hybrids for uniplanar MMIC’s,” IEEE Trans. Microwave Theory Tech., vol. 38, no. 3, pp. 270–275, March 1990.
[18] H. Kamitsuna, “A very small, low-loss MMIC rat-race hybrid using elevated coplanar waveguides,” IEEE Microwave Wireless Comp. Lett., vol. 2, no. 8, pp. 337-339, Aug. 1992.
[19] A. Lai, C. Caloz, and T. Itoh, “Composite right/left-handed transmission line metamaterials,” IEEE Micro., vol. 5, no. 3, pp. 34-50, Sep. 2004.
[20] I-H. Lin, C. C. Caloz, and T. Itoh, “A branch-line coupler with two arbitrary operating frequencies using left-handed transmission lines,” in IEEE-MTT Int. Symp. Dig., Philadelphia, PA, vol. 1, pp. 325–327, 2003.
[21] H. Okabe, C. Caloz and T. Itoh, “A compact enhanced-bandwidth hybrid ring using an artificial lumped-element left-handed transmission-line section,” IEEE Trans. Microwave Theory Tech., vol. 52, no. 3, pp. 798–804, March 2004.
[22] S.-G Mao, M.-S Wu, Y.-Z. Chueh and C. H. Chen, “Modeling of symmetric composite right/left-handed coplanar waveguides with applications to compact bandpass filters,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 11, pp. 3460–3466, Nov. 2005.
[23] S.-G Mao and Y.-Z. Chueh, “Broadband composite right/left-handed coplanar waveguide power splitters with arbitrary phase responses and balun and antenna applications,” IEEE trans. Antennas Propagat., vol. 54, no. 1, pp. 243–250, Jan, 2006.
[24] W. Tong, Z. Hu, H. S. Chua, P. D. Curtis, A. A. P. Gibson and M. Missous, “Left-handed metamaterial coplanar waveguide components and circuits in GaAs MMIC technology,” IEEE Trans. Microwave Theory Tech., vol. 55, no. 8, pp. 1794–1800, Aug. 2007.
[25] W. R. Eisenstadt and Y. Eo, “S-parameter-based IC interconnect transmission line characterization,” IEEE trans. Comp., Hybrids, Manufact. Technol., vol. 15, no. 4, pp. 483–490, Aug. 1992.
[26] C. P. Wen, “Coplanar waveguide directional couplers,” IEEE Trans. Microwave Theory Tech., vol. 18, no. 6, pp. 318–322, June 1970.
[27] C.-L. Liao and C. H. Chen, “A novel coplanar-waveguide directional coupler with finite-extent backed conductor,” IEEE Trans. Microwave Theory Tech., vol. 51, no. 1, pp. 200–206, Jan. 2003.
[28] L. Li, F. Xu, K. Wu, J. Ho and M. Chaker, “Slow-wave line coupler with interdigital capacitor loading,” IEEE Trans. Microwave Theory Tech., vol. 55, no. 11, pp. 2427–2433, Nov. 2007.
[29] S.-G Mao and M.-S Wu, “A novel 3-dB directional coupler with broad bandwidth and compact size using composite right/left-handed coplanar waveguide,” IEEE Microwave Wireless Comp. Lett., vol. 17, no. 5, pp. 331–333, May 2007.
[30] D.-J. Kim, Y. Jeong, J.-H. Kang, J.-H. Kim, C.-S. Kim, J.-S. Lim and A. Ahn, “A novel design of high directivity CPW directional coupler design by using DGS,” in IEEE-MTT Int. Symp. Dig., Long Beach, Ca, USA, pp. 1239–1243, June 1995.
[31] M. Nedil and T. A. Denidni, “Analysis and design of an ultra wideband directional coupler,” Progress in Electromagnetics Research., PIER B, vol. 1, pp. 291–305, 2008.
[32] F. Tefiku, E. Yamashita and J. Funada, “Novel directional couplers using broadside-coupled coplanar waveguides for double-sided printed antennas,” IEEE Trans. Microwave Theory Tech., vol. 44, no. 2, pp. 275–282, Feb. 1996.
[33] R. K. Mongia, I. J. Bahl, P. Bhartia and J. Hong, RF and Microwave Coupled-Line Circuits, 2nd ed. Norwood, MA: Artech House, 2007.
[34] Z. Liu and R. M. Weikle, “A compact quadrature coupler based on coupled artificial transmission lines,” IEEE Microwave Wireless Comp. Lett., vol. 15, no. 12, pp. 889–891, Dec. 2005.
[35] T.-G. Ma and Y.-T. Cheng, “An artificial-transmission-line-based miniaturized Marchand balun with multilayered printed circuit board,” IEEE Microwave Wireless Comp. Lett., submitted for publication.
[36] T.-G. Ma and Y.-T. Cheng, “Miniaturized broadside coupler using coupled slow-wave artificial lines,” Electron. Lett., vol. 45, no. 10, pp. 511–512, May. 2009.

QR CODE