簡易檢索 / 詳目顯示

研究生: 費惟杉
Wei-Shan Fei
論文名稱: 基於LSTM神經網路之位元翻轉CA-SCL解碼在極化碼之應用
CA-SCL with Bit Flipping Based on LSTM Neural Networks for Polar Codes
指導教授: 賴坤財
Kuen-Tsair Lay
口試委員: 方文賢
Wen-Hsien Fang
曾德峰
Der-Feng Tseng
陳郁堂
Yie-Tarng Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 61
中文關鍵詞: 錯誤更正碼極化碼CRC輔助順續消去列表法長短期記憶網路翻轉位元解碼
外文關鍵詞: Error Correction Code, Polar Code, CRC-Aided Successive Cancellation List, Long Short-Term Memory Network, Bit-Flip Decoding
相關次數: 點閱:233下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著通訊技術的日益發展,第五代行動通訊技術(5G)也逐漸普及。這樣的背景下,解碼技術仍不斷追求高可靠度和低延遲的需求。在5G規格中,極化碼被作為錯誤更正碼的編碼方案之一,而在極化碼的解碼方法中,順續消去法(SC)和改良版的順續消去列表法(SCL)被廣泛應用。
    然而,順續消去法解碼時需要按照順續進行,且下一個位元解碼時需要使用前一個位元解碼的資訊。這樣一來,如果前面的位元解碼錯誤,就會導致錯誤資訊不斷傳遞。為了改善這個問題,順續消去法翻轉解碼(SC-Flip)應運而生。它在初次解碼失敗後,將解碼至葉節點的訊息位元的絕對值對數似然比(|LLR|)作為指標,透過數次重新進行SC解碼並在過程中翻轉一個錯誤機率高的位元,以避免錯誤傳遞。然而,我們希望使用基於LSTM神經網路的判斷方式,來用不同的方法來改善錯誤的傳遞。
    本篇論文的主要目標是改善順續消去法翻轉解碼中翻轉判斷的標準,並使用深度學習的方式提供輔助。研究中利用長短期記憶模型(LSTM)進行訓練,同時對其它篇論文中的訓練方法進行改良。最終,將這種改進的解碼方法應用於更高可靠度的順續消去列表法(SCL)中,並結合循環冗餘校驗(CRC)因子,我們稱LSTM-CA-SCLF。研究中根據不同的訊雜比進行多次翻轉的探討,以降低整體區塊錯誤率(BLER),同時盡量減少平均解碼回數(ADR)的影響。


    In recent years, the rapid advancement of communication technology has led to the widespread adoption of the fifth-generation mobile communication technology(5G). Within this context, there is a growing demand for decoding techniques that offer high reliability and low latency. Polar codes have emerged as one of the coding schemes for error correction in the 5G specification, with successive cancellation (SC) and the enhanced successive cancellation list (SCL) being widely employed for decoding polar codes.

    However, successive cancellation decoding is performed in a sequential order, and the decoding of the next bit requires information from the decoding of the previous bit. As a result, if there is an error in the decoding of a previous bit, it will lead to the propagation of errors. To address this problem, successive cancellation with flipping decoding (SC-Flip) was introduced. After the initial decoding failure, SC-Flip uses the absolute value of the log-likelihood ratio (|LLR|) of the decoded bit at the leaf node as an indicator. It performs multiple iterations of SC decoding and flips a bit with a high error probability during the process to prevent error propagation. However, we aim to improve the error propagation using a judgment method based on the LSTM neural network, employing different approaches.

    The primary objective of this paper is to enhance the criteria used for flipping judgment in successive cancellation with flipping decoding and provide auxiliary support through deep learning. In this study, we train a long short-term memory (LSTM) model and improve upon existing training methods proposed in related literature. Ultimately, we apply this enhanced decoding approach to the more reliable successive cancellation list (SCL), incorporating cyclic redundancy check (CRC) factors, referred to as LSTM-CA-SCLF. Our research investigates multiple iterations of flipping based on various signal-to-noise ratios (SNR) to minimize the overall block error rate (BLER) while mitigating the impact on the average decoding round (ADR).

    摘要 i ABSTRACT ii 誌謝 iv 目錄 v 圖索引 viii 表索引 x 中英文對照表 xi 第一章 緒論 1 1.1 前言 1 1.2 極化碼 1 1.3 深度學習 2 1.4 研究動機 3 1.5 本文架構 4 第二章 相關技術介紹 5 2.1 極化碼的編碼 5 2.2 極化碼常見的解碼 6 2.2.1 順續消去法 6 2.2.2順續消去列表法 8 2.2.3 CRC輔助順續消去列表法 9 2.3 順續消去法翻轉解碼 11 2.4 遞歸神經網路 13 2.4.1 RNN結構 13 2.4.2 長短期記憶網路 16 2.4.3 RNN和LSTM的差異 16 2.4.4 LSTM架構與核心概念 17 第三章 神經網路順續消去列表法多次翻轉 20 3.1 SC解碼的LSTM網絡設計 20 3.1.2 訓練 LSTM 識別第一個錯誤位 21 3.1.3 LSTM判斷翻轉SC解碼 22 3.1.4 LSTM與|LLR|的翻轉判斷比較 23 3.2 訓練模型的改良 24 3.2.1 訓練數據庫的輸入 25 3.2.2 訓練數據庫的預期輸出 26 3.3 LSTM-CA-SCLF網路架構與訓練超參數 30 3.4 新訓練方式與模型的關注點 31 第四章 實驗結果與討論 34 4.1 不同的數據庫輸入訓練方式 34 4.2 不同判斷指標的多數翻轉解碼比較 36 4.2.1 LSTM-CA-SCLF與|LLR|指標翻轉解碼錯誤率比較 36 4.2.2 LSTM-CA-SCLF與兩階段訓練翻轉解碼錯誤率比較 38 4.3 多數翻轉解碼的上限 39 4.3.1 不同列表數量訊練資料的翻轉解碼錯誤率比較 39 4.3.2 不同使用判斷錯誤位模型的翻轉解碼錯誤率比較 41 第五章 結論與未來發展 43 5.1 結論 43 5.2 未來發展 43 參考文獻 45

    [1] E. Arikan, "Channel polarization: A method for constructing
    capacity-achieving codes," IEEE International Symposium on
    Information Theory, pp. 1173-1177, 2008.

    [2] E. Arikan, "Channel Polarization: A Method for Constructing
    Capacity-Achieving Codes for Symmetric Binary-Input
    Memoryless Channels, " IEEE Transactions on Information
    Theory, vol. 55, no. 7, pp. 3051-3073, 2009.

    [3] O. Afisiadis, A. Balatsoukas-Stimming, and A. Burg, "A Low-Complexity Improved Successive Cancellation Decoder for Polar Codes," 2014 48th Asilomar Conference on Signals, Systems and Computers, pp. 2116-2120, 2014.

    [4] A. Balatsoukas-Stimming, M. B. Parizi, and A. Burg, "LLRBased
    Successive Cancellation List Decoding of Polar Codes,"
    IEEE Transactions on Signal Processing, vol. 63, no. 19, pp.
    5165-5179, 2015.

    [5] Y. Yongrun, P. Zhiwen, L. Nan and Y. Xiaohu, "Successive Cancellation List Bit-flip Decoder for Polar Codes," 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP), pp. 1-6, 2018.

    [6] F. Cheng, A. Liu, Y. Zhang, and J. Ren, "Bit-Flip Algorithm for Successive Cancellation List Decoder of Polar Codes," in IEEE Access, vol. 7, pp. 58346-58352, 2019.

    [7] K. Niu and K. Chen, "CRC-Aided Decoding of Polar Codes," IEEE Communications Letters, vol. 16, no. 10, pp.
    1668-1671, 2012.

    [8] 呂育瑋,“高效快速可適性極化碼解碼搭配分段CRC 順續消除列表法,”國立台灣科技大學電子工程所,2020。

    [9] X. Wang, H. Zhang, R. Li, L. Huang, S. Dai, Y. Huangfu, and J. Wang, "Learning to Flip Successive Cancellation Decoding of Polar Codes with LSTM Networks," IEEE 30th Annual Inter. Sym. on Per., Indoor and Mobile Radio Commun. (PIMRC), pp.1-5, Nov. 2019.

    [10] E. Arikan, "A Machine Learning Based Multi-flips Successive Cancellation Decoding Scheme of Polar Codes," 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), pp. 1-5, Jun. 2020.

    [11] F. Carpi, C. Hager, M. Martalo, R. Raheli and H. D. Pfister, "Reinforcement Learning for Channel Coding: Learned Bit-Flipping Decoding," 2019 57th Annual Allerton Conference on Communication, pp. 922-929, 2019.

    [12] R. DiPietro and GD. Hager, "Deep learning: RNNs and LSTM," Handbook of Medical Image Computing and Computer Assisted Intervention, pp. 503-519, 2019.

    無法下載圖示 全文公開日期 2025/08/02 (校內網路)
    全文公開日期 2028/08/02 (校外網路)
    全文公開日期 2028/08/02 (國家圖書館:臺灣博碩士論文系統)
    QR CODE