簡易檢索 / 詳目顯示

研究生: 洪惠鈺
Hui-Yu Hung
論文名稱: 以溶解沉澱法製備高導電度硫/聚丙烯腈-碳複合物於鋰硫電池正極之應用
A Dissolution/Precipitation Method Employed in the Preparation of Highly Conductive Sulfur/Polyacrylonitrile-Carbon Composites for Lithium-Sulfur Battery.
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 林昇佃
Shawn D. Lin
蘇威年
Wei-Nien Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 124
中文關鍵詞: 鋰硫電池硫-聚丙烯腈導電碳溶解沉澱法
外文關鍵詞: lithium sulfur battery, sulfur-polyacrylonitrile, conductive carbon, dissolution/reprecipitation process
相關次數: 點閱:219下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

由於硫價格低廉、環境友好及高比電容量 (1675 mAh/g sulfur) 等優點,被視為非常有開發前景的高能量密度鋰電池正極材料。相對於一般鋰硫電池正極材料,硫-聚丙烯腈化合物 (S/PAN) 由於在充放電過程中不會有長鏈聚硫鋰化物之形成,可在一般商用鋰電池電解液 (LiPF6 in EC: DEC) 中維持良好電化學效能,然而,S/PAN仍存在許多缺點,諸如材料含硫量低導致電池整體電容量較低及在進行高速率充放電時導電度不佳等。
為改善上述問題,本研究使用溶解沉澱法將聚丙烯腈包覆在導電碳材 (super P) 上,並藉由調配聚丙烯腈/N-甲基咯烷酮 (PAN/NMP) 溶液濃度及聚丙烯腈與導電碳的比例,得到較高表面積且顆粒大小均一之聚丙烯腈-碳複合物 (rSP@PAN)。接著將硫 (S) 先溶於二硫化碳 (CS2 ) 溶劑中,利用液固混拌提升S與rSP@PAN的混合均勻度,再進行高溫熱處理,得到硫-聚丙烯腈-碳複合物(SCS2/rSP@PAN)。結果顯示,表面積提高之rSP@PAN複合物可使高分子PAN與S反應接觸面積增加,在與硫燒結後,形成之SCS2/rSP@PAN其含硫量最高可達54.5%,且其實際S/PAN化合物中的含硫量為66.5%,相較於一般商業化PAN與S之化合物僅有44.5%硫含量,明顯有所提高。此外,導電碳的摻入可彌補PAN及S的低導電度,提高在高速率充放電下的可逆電容量。實驗發現,SCS2/rSP@PAN正極材料在10 C 的充放電速率下,仍可得到511 mAh/gS的高可逆電容量,相較於一般商業化PAN與S之化合物僅能達約80 mAh/gS之電容量,顯示導電碳混摻有利於提升S/PAN化合物的電化學效能。本研究發展之硫-聚丙烯腈-碳複合物 (SCS2/rSP@PAN) 可有效提高硫含量及材料導電度,使其能量密度及功率密度皆有提高,更有潛力運用於鋰硫電池的陰極上。


Element sulfur, with the advantages of low cost, environmental friendly, and high theoretical specific capacity (1675 mAh/g) has been seen as a promising choice of high energy density cathode material for rechargeable lithium batteries. Relative to the ordinary lithium sulfur battery cathodes, the sulfur/polyacrylonitrile, without the formation of high-order lithium polysulfides during the charge/discharge process, exhibits better electrochemical performance using commercial electrolyte (LiPF6 in EC: DEC). However, several drawbacks exist in the S/PAN such as the lower sulfur content leading to the lower capacity of the battery and poor electrical conductivity of sulfur at high charge/discharge rate.
In order to overcome the problem as mentioned, in this study, dissolution/reprecipitation process was used to wrap the polyacrylonitrile onto conductive carbon (super P) and the polyacrylonitrile-carbon composite (rSP@PAN), with the higher surface area and uniform particle size, was obtained by adjusting the concentrations of the PAN/NMP solution and the ratio of PAN and the conductive carbon. Then, the sulfur was dissolved into CS2 solvent and mixed with rSP@PAN in which the uniformity can be improved via liquid-solid mixing, and the SCS2/rSP@PAN was obtained after the calcination. It was found that the contact area between PAN and S can be effectively increased by the higher surface area of rSP@PAN. After heat treatment with sulfur, the highest sulfur content of obtained SCS2/rSP@PAN reaches 54.5%, which is 66.5% sulfur content in only S/PAN compound, showing an obvious improvement in comparison to only 44.5% sulfur content in sulfur/commercial PAN compound. Moreover, the introduction of the conductive carbon can compensate the low conductivity of PAN and sulfur, which improves the reversible capacity at high charge/discharge rate. The result shows that SCS2/rSP@PAN can deliver a high reversible capacity of 511 mAh/gS at 10 C-rate, which is only 80 mAh/gS obtained in sulfur/commercial PAN compound. This reveals that the electrochemical performance can be improved by introducing the conductive carbon. In general, the sulfur content and the conductivity of material can be effectively enhanced by developed sulfur- polyacrylonitrile-carbon composite, leading a higher energy density and power density and providing a promising cathode material for lithium sulfur battery.

摘要 I Abstract V 誌謝 VII 目錄 VIII 圖目錄 X 表目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 鋰離子電池的演進與發展 2 1.3 鋰離子二次電池之組成與機制 4 1.4 鋰離子二次電池各元件介紹 6 1.4.1 正極(陰極) 6 1.4.2 負極(陽極) 10 1.4.3 電解液 12 1.4.4 隔離膜 15 1.5 研究動機與目的 16 第二章 文獻回顧 18 2.1 鋰硫電池概述 18 2.1.1 鋰硫電池電化學機制 19 2.1.2 鋰硫電池存在的主要問題 24 2.2 鋰硫電池正極材料 26 2.2.1 硫-碳複合材料 26 2.2.2 硫-金屬氧化物/金屬碳化物複合材料 37 2.2.3 硫-導電聚合物複合材料 40 2.2.4 聚丙烯腈-硫複合材料 43 第三章 實驗 47 3.1 儀器設備 47 3.2 實驗藥品 49 3,3 實驗步驟 50 3.3.3材料合成 50 3.3.4 陰極極片之製備 56 3.3.5 鈕扣型電池組裝 58 3.3.6鈕扣型電池充放電測試分析 60 3.4 材料鑑定與分析 61 3.4.1 EA 元素分析儀 (Element Analysis) 61 3.4.2 XRD粉末繞射分析 62 3.4.3 拉曼散射光譜儀(Raman Scattering Spectroscopy) 63 3.4.4 掃描式電子顯微鏡表面型態分析 (SEM) 65 3.4.5 穿透式電子顯微鏡 (TEM) 65 3.4.6 X光能量色散圖譜分析(EDS) 66 3.4.7 熱重量分析儀 (TGA) 67 第四章 結果與討論 68 4.1 以不同混拌方式製備S/PAN化合物 68 4.1.1 不同混拌製程S/PAN化合物的含硫重量比 68 4.1.2 S/PAN結構鑑定 70 4.1.3 鈕扣型電池性能測試 72 4.2以再沉澱法改質PAN並製備S/rPAN複合物 76 4.2.1 改質PAN(rPAN)的結構鑑定 77 4.2.2 SCS2/rPAN化合物的含硫重量比與結構鑑定 81 4.2.3 SCS2/rPAN化合物鈕扣型電池性能測試 84 4.3 Suepr P導電碳混摻S/rPAN 複合物的製備跟鑑定 88 4.3.1核殼SP@PAN載體之製備及鑑定 89 4.3.2 SCS2/rSP@PAN化合物的含硫重量比與結構鑑定 97 4.3.3 SCS2/rSP@PAN化合物鈕扣型電池性能測試 106 第五章 結論 114 未來展望 117 參考文獻 118

1. 浩志, 狩., 【技術講座】電池開發呈多樣化,更加注重安全性能.
2. 林振華、林振富, 充電式鋰離子電池之材料與應用.
3. Julien, C., A. Mauger, K. Zaghib, and H. Groult, Comparative Issues of Cathode Materials for Li-Ion Batteries. Inorganics, 2014. 2(1): p. 132.
4. Mizushima, K., P.C. Jones, P.J. Wiseman, and J.B. Goodenough, LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 1980. 15(6): p. 783-789.
5. Fergus, J.W., Recent developments in cathode materials for lithium ion batteries. Journal of Power Sources, 2010. 195(4): p. 939-954.
6. Huang, Y., J. Chen, J. Ni, H. Zhou, and X. Zhang, A modified ZrO2-coating process to improve electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2. Journal of Power Sources, 2009. 188(2): p. 538-545.
7. Yabuuchi, N., K. Yoshii, S.-T. Myung, I. Nakai, and S. Komaba, Detailed Studies of a High-Capacity Electrode Material for Rechargeable Batteries, Li2MnO3−LiCo1/3Ni1/3Mn1/3O2. Journal of the American Chemical Society, 2011. 133(12): p. 4404-4419.
8. Thackeray, M.M., David, W. I. F., Bruce, P. G. & Goodenough, J. B., Lithium insertion into manganese spinels. Materials Research Bulletin, 1983. 18.
9. Qing, C., Bai, Y., Yang, J., Zhang, W, Enhanced cycling stability of LiMn2O4 cathode by amorphous FePO4 coating. Electrochimica Acta, 2011. 56.
10. Şahan, H., Göktepe, H., Patat, S. , Ülgen, A. , Effect of the Cr2O3 coating on electrochemical properties of spinel LiMn2O4 as a cathode material for lithium battery applications. Solid State Ionics, 2010. 181.
11. Walz, K.A.a., Johnson, C.S.b, Genthe, J.a, Stoiber, L.C.a, Zeltner, W.A.a, Anderson, M.A.a, Thackeray, M.M.b, Elevated temperature cycling stability and electrochemical impedance of LiMn2O4 cathodes with nanoporous ZrO2 and TiO2 coatings. Journal of Power Sources, 2010. 195.
12. Şahan, H., Göktepe, H., Patat, Ş. , A Novel Method to Improve the Electrochemical Performance of LiMn2O4 Cathode Active Material by CaCO3 Surface Coating. Journal of Materials Science and Technology, 2011. 27.
13. Padhi, A.K., Nanjundaswamy, K. S. & Goodenough, J. B., Phospho-olivines as Positive Electrode Materials for Rechargeable Lithium Batteries. Journal of the Electrochemical Society, 1997. 144.
14. Wang, S., C. Zhou, Q. Zhou, G. Ni, and J. Wu, Preparation of LiFePO4/C in a reductive atmosphere generated by windward aerobic decomposition of glucose. Journal of Power Sources, 2011.
15. Oh, S.M., Oh, S.W., Yoon, C.S., Scrosati, B., Amine, K., Sun, Y.K., High-performance carbon-LiMnPO4 nanocomposite cathode for lithium batteries Advanced Functional Materials, 2010. 20.
16. Li, H.H., Jin, J., Wei, J.P., Zhou, Z., Yan, J., Fast synthesis of core-shell LiCoPO4/C nanocomposite via microwave heating and its electrochemical Li intercalation performances Electrochemistry Communications, 2009. 11
17. Saravanan, K.a., Vittal, J.J.a , Reddy, M.V.b, Chowdari, B.V.R.b, Balaya, P., Storage performance of LiFe 1-xMn xPO 4 nanoplates (x=0, 0.5, and 1). Journal of Solid State Electrochemistry, 2010. 14(10).
18. Jongsoon Kim, Y.U.P., Dong-Hwa Seo,Jinsoo Kim, Sung-Wook Kim, and Kisuk Kang, Mg and Fe Co-doped Mn Based Olivine Cathode Material for High Power Capability. J. Electrochem. Soc., 2011. 158(3).
19. Saravanan, K., Ramar, V., Balaya, P. , Vittal, J.J. , Li(MnxFe1-x)PO4/C (x = 0.5, 0.75 and 1) nanoplates for lithium storage application. Journal of Materials Chemistry, 2011. 21(38).
20. Li, G., Azuma, H., Tohda, M., LiMnPO4 as the cathode for lithium batteries. Electrochemical and Solid-State Letters, 2002. 5.
21. Amine, K., Yasuda, H., Yamachi, M., Olivine LiCoPO4 as 4.8 V electrode material for lithium batteries. Electrochemical and Solid-State Letters, 2000. 3.
22. Wolfenstine, J., Allen, J., Ni3+/Ni2+ redox potential in LiNiPO4 Journal of Power Sources, 2005. 142.
23. R. D. Rauh, K.M.A., G. F. Pearson, J. K. Surprenant and S. B. Brummer, A Lithium/Dissolved Sulfur Battery with an Organic Electrolyte Journal of The Electrochemical Society, 1979. vol. 126.
24. Nazar, L.F., X. Ji, and K.T. Lee, A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nature Materials, 2009. 8(6): p. 500-506.
25. Hagen, M., D. Hanselmann, K. Ahlbrecht, R. Maça, D. Gerber, and J. Tübke, Lithium–Sulfur Cells: The Gap between the State-of-the-Art and the Requirements for High Energy Battery Cells. Advanced Energy Materials, 2015. 5(16): p. n/a-n/a.
26. Zanini, M., S. Basu, and J.E. Fischer, Alternate synthesis and reflectivity spectrum of stage 1 lithium—graphite intercalation compound. Carbon, 1978. 16(3): p. 211-212.
27. Tibbetts, G.G., D.W. Gorkiewicz, and R.L. Alig, A new reactor for growing carbon fibers from liquid- and vapor-phase hydrocarbons. Carbon, 1993. 31(5): p. 809-814.
28. Endo, M., C. Kim, K. Nishimura, T. Fujino, and K. Miyashita, Recent development of carbon materials for Li ion batteries. Carbon, 2000. 38(2): p. 183-197.
29. Li, T.J., K.C. Ho, and W.H. Chiang, Controllable Synthesis of Heteroatom-Doped Carbon Nanotubes As Efficient Catalysts for Electrochemical Detection of Dopamine. Meeting Abstracts, 2013. MA2013-02(41): p. 2443.
30. 林振華、林振富, 充電式鋰離子電池之材料與應用.
31. 呂學隆, 鋰電池電解液產業在兩岸的發展現況. 工業材料雜誌, 2011. 289.
32. Goodenough, J.B. and Y. Kim, Challenges for rechargeable Li batteries. Chemistry of Materials, 2010. 22(3): p. 587-603.
33. Manthiram, A., Y. Fu, S.-H. Chung, C. Zu, and Y.-S. Su, Rechargeable Lithium–Sulfur Batteries. Chemical Reviews, 2014. 114(23): p. 11751-11787.
34. Rauh, R.D., K.M. Abraham, G.F. Pearson, J.K. Surprenant, and S.B. Brummer, A Lithium/Dissolved Sulfur Battery with an Organic Electrolyte. Journal of The Electrochemical Society, 1979. 126(4): p. 523-527.
35. Yamin, H. and E. Peled, Electrochemistry of a nonaqueous lithium/sulfur cell. Journal of Power Sources, 1983. 9(3): p. 281-287.
36. Yeon, J.T., J.Y. Jang, J.G. Han, J. Cho, K.T. Lee, and N.-S. Choi, Raman Spectroscopic and X-ray Diffraction Studies of Sulfur Composite Electrodes during Discharge and Charge. Journal of The Electrochemical Society, 2012. 159(8): p. A1308-A1314.
37. Mikhaylik, Y.V. and J.R. Akridge, Polysulfide Shuttle Study in the Li/S Battery System. Journal of The Electrochemical Society, 2004. 151(11): p. A1969-A1976.
38. Diao, Y., K. Xie, S. Xiong, and X. Hong, Analysis of Polysulfide Dissolved in Electrolyte in Discharge-Charge Process of Li-S Battery. Journal of The Electrochemical Society, 2012. 159(4): p. A421-A425.
39. Ji, X., K.T. Lee, and L.F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater, 2009. 8(6): p. 500-506.
40. Jayaprakash, N., J. Shen, S.S. Moganty, A. Corona, and L.A. Archer, Porous Hollow Carbon@Sulfur Composites for High-Power Lithium–Sulfur Batteries. Angewandte Chemie International Edition, 2011. 50(26): p. 5904-5908.
41. Zhang, B., X. Qin, G.R. Li, and X.P. Gao, Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy & Environmental Science, 2010. 3(10): p. 1531-1537.
42. Xin, S., L. Gu, N.H. Zhao, Y.X. Yin, L.J. Zhou, Y.G. Guo, and L.J. Wan, Smaller Sulfur Molecules Promise Better Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2012. 134(45): p. 18510-18513.
43. Dorfler, S., M. Hagen, H. Althues, J. Tubke, S. Kaskel, and M.J. Hoffmann, High capacity vertical aligned carbon nanotube/sulfur composite cathodes for lithium-sulfur batteries. Chemical Communications, 2012. 48(34): p. 4097-4099.
44. Guo, J., Y. Xu, and C. Wang, Sulfur-Impregnated Disordered Carbon Nanotubes Cathode for Lithium–Sulfur Batteries. Nano Letters, 2011. 11(10): p. 4288-4294.
45. Ji, L., M. Rao, S. Aloni, L. Wang, E.J. Cairns, and Y. Zhang, Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells. Energy & Environmental Science, 2011. 4(12): p. 5053-5059.
46. Zheng, G., Y. Yang, J.J. Cha, S.S. Hong, and Y. Cui, Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries. Nano Letters, 2011. 11(10): p. 4462-4467.
47. Wang, H., Y. Yang, Y. Liang, J.T. Robinson, Y. Li, A. Jackson, Y. Cui, and H. Dai, Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium–Sulfur Battery Cathode Material with High Capacity and Cycling Stability. Nano Letters, 2011. 11(7): p. 2644-2647.
48. Li, N., M. Zheng, H. Lu, Z. Hu, C. Shen, X. Chang, G. Ji, J. Cao, and Y. Shi, High-rate lithium-sulfur batteries promoted by reduced graphene oxide coating. Chemical Communications, 2012. 48(34): p. 4106-4108.
49. Xu, H., Y. Deng, Z. Shi, Y. Qian, Y. Meng, and G. Chen, Graphene-encapsulated sulfur (GES) composites with a core-shell structure as superior cathode materials for lithium-sulfur batteries. Journal of Materials Chemistry A, 2013. 1(47): p. 15142-15149.
50. Chen, R., T. Zhao, J. Lu, F. Wu, L. Li, J. Chen, G. Tan, Y. Ye, and K. Amine, Graphene-Based Three-Dimensional Hierarchical Sandwich-type Architecture for High-Performance Li/S Batteries. Nano Letters, 2013. 13(10): p. 4642-4649.
51. Qiu, Y., W. Li, W. Zhao, G. Li, Y. Hou, M. Liu, L. Zhou, F. Ye, H. Li, Z. Wei, S. Yang, W. Duan, Y. Ye, J. Guo, and Y. Zhang, High-Rate, Ultralong Cycle-Life Lithium/Sulfur Batteries Enabled by Nitrogen-Doped Graphene. Nano Letters, 2014. 14(8): p. 4821-4827.
52. Song, J., M.L. Gordin, T. Xu, S. Chen, Z. Yu, H. Sohn, J. Lu, Y. Ren, Y. Duan, and D. Wang, Strong Lithium Polysulfide Chemisorption on Electroactive Sites of Nitrogen-Doped Carbon Composites For High-Performance Lithium–Sulfur Battery Cathodes. Angewandte Chemie International Edition, 2015. 54(14): p. 4325-4329.
53. Sohn, H., M.L. Gordin, M. Regula, D.H. Kim, Y.S. Jung, J. Song, and D. Wang, Porous spherical polyacrylonitrile-carbon nanocomposite with high loading of sulfur for lithium–sulfur batteries. Journal of Power Sources, 2016. 302: p. 70-78.
54. Evers, S., T. Yim, and L.F. Nazar, Understanding the Nature of Absorption/Adsorption in Nanoporous Polysulfide Sorbents for the Li–S Battery. The Journal of Physical Chemistry C, 2012. 116(37): p. 19653-19658.
55. Lee, K.T., R. Black, T. Yim, X. Ji, and L.F. Nazar, Surface-Initiated Growth of Thin Oxide Coatings for Li–Sulfur Battery Cathodes. Advanced Energy Materials, 2012. 2(12): p. 1490-1496.
56. Wei Seh, Z., W. Li, J.J. Cha, G. Zheng, Y. Yang, M.T. McDowell, P.-C. Hsu, and Y. Cui, Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat Commun, 2013. 4: p. 1331.
57. Liang, X., A. Garsuch, and L.F. Nazar, Sulfur Cathodes Based on Conductive MXene Nanosheets for High-Performance Lithium–Sulfur Batteries. Angewandte Chemie International Edition, 2015. 54(13): p. 3907-3911.
58. Wu, F., J. Chen, R. Chen, S. Wu, L. Li, S. Chen, and T. Zhao, Sulfur/Polythiophene with a Core/Shell Structure: Synthesis and Electrochemical Properties of the Cathode for Rechargeable Lithium Batteries. The Journal of Physical Chemistry C, 2011. 115(13): p. 6057-6063.
59. Wu, F., J. Chen, L. Li, T. Zhao, and R. Chen, Improvement of Rate and Cycle Performence by Rapid Polyaniline Coating of a MWCNT/Sulfur Cathode. The Journal of Physical Chemistry C, 2011. 115(49): p. 24411-24417.
60. Xiao, L., Y. Cao, J. Xiao, B. Schwenzer, M.H. Engelhard, L.V. Saraf, Z. Nie, G.J. Exarhos, and J. Liu, A Soft Approach to Encapsulate Sulfur: Polyaniline Nanotubes for Lithium-Sulfur Batteries with Long Cycle Life. Advanced Materials, 2012. 24(9): p. 1176-1181.
61. Li, W., Q. Zhang, G. Zheng, Z.W. Seh, H. Yao, and Y. Cui, Understanding the Role of Different Conductive Polymers in Improving the Nanostructured Sulfur Cathode Performance. Nano Letters, 2013. 13(11): p. 5534-5540.
62. Zhang, S.S., Sulfurized carbon: a class of cathode materials for high performance lithium/sulfur batteries. Frontiers in Energy Research, 2013. 1.
63. Wang, J., J. Yang, J. Xie, and N. Xu, A Novel Conductive Polymer–Sulfur Composite Cathode Material for Rechargeable Lithium Batteries. Advanced Materials, 2002. 14(13-14): p. 963-965.
64. Wang, J., J. Yang, C. Wan, K. Du, J. Xie, and N. Xu, Sulfur Composite Cathode Materials for Rechargeable Lithium Batteries. Advanced Functional Materials, 2003. 13(6): p. 487-492.
65. Yin, L., J. Wang, J. Yang, and Y. Nuli, A novel pyrolyzed polyacrylonitrile-sulfur@MWCNT composite cathode material for high-rate rechargeable lithium/sulfur batteries. Journal of Materials Chemistry, 2011. 21(19): p. 6807-6810.
66. Yin, L., J. Wang, F. Lin, J. Yang, and Y. Nuli, Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li-S batteries. Energy & Environmental Science, 2012. 5(5): p. 6966-6972.
67. Doan, T.N.L., M. Ghaznavi, Y. Zhao, Y. Zhang, A. Konarov, M. Sadhu, R. Tangirala, and P. Chen, Binding mechanism of sulfur and dehydrogenated polyacrylonitrile in sulfur/polymer composite cathode. Journal of Power Sources, 2013. 241: p. 61-69.
68. Kim, J.-S., T.H. Hwang, B.G. Kim, J. Min, and J.W. Choi, A Lithium-Sulfur Battery with a High Areal Energy Density. Advanced Functional Materials, 2014. 24(34): p. 5359-5367.
69. Wei, S., L. Ma, K.E. Hendrickson, Z. Tu, and L.A. Archer, Metal–Sulfur Battery Cathodes Based on PAN–Sulfur Composites. Journal of the American Chemical Society, 2015. 137(37): p. 12143-12152.
70. Konarov, A., D. Gosselink, T.N.L. Doan, Y. Zhang, Y. Zhao, and P. Chen, Simple, scalable, and economical preparation of sulfur–PAN composite cathodes for Li/S batteries. Journal of Power Sources, 2014. 259: p. 183-187.
71. Mathur, R.B., O.P. Bahl, J. Mittal, and K.C. Nagpal, Structure of thermally stabilized PAN fibers. Carbon, 1991. 29(7): p. 1059-1061.
72. Yu, X.-g., J.-y. Xie, J. Yang, H.-j. Huang, K. Wang, and Z.-s. Wen, Lithium storage in conductive sulfur-containing polymers. Journal of Electroanalytical Chemistry, 2004. 573(1): p. 121-128.

無法下載圖示 全文公開日期 2021/08/19 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE