簡易檢索 / 詳目顯示

研究生: 廖盈甄
Ying-Chen Liao
論文名稱: 兩性材料鋰釩磷酸化合物之內部並聯混成電容器
Internal parallel hybrid capacitors with an amphoteric material of lithium vanadium phosphate
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 江志強
Jyh-Chiang Jiang
戴龑
Yian Tai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 100
中文關鍵詞: 內部並聯混成式電容器鋰釩磷酸化合物兩性材料鈷酸鋰鋰嵌入嵌出活性碳雙材料電極
外文關鍵詞: internal parallel hybrid capacitor, lithium vanadium phosphate, amphoteric material, Lithium cobalt oxide, lithium intercalation/deintercalation, activated carbon, bi-material electrode
相關次數: 點閱:278下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

內部並聯混成式電容器是在電極材料層面上混成兩種材料,一為鋰離子電池材料,另一為電容器材料,藉由控制電流密度大小,使其發揮電池的高能量或是電容器的高功率之特色。本研究中,我們使用兩性材料鋰釩磷酸化合物混成活性碳同時用於正負極,組裝成IPH電容器;另外,將正極材料改為鈷酸鋰混成活性碳與鋰釩磷酸化合物混成活性碳的負極組裝成IPH電容器,進行電化學性質量測。
兩性材料Li3V2(PO4)3 LVP利用溶膠法合成,並透過X光繞射得知其晶體結構為JCPDS 04-016-1666。使用恆電流充放電量測不同電位窗口下的單電極電化學特性,用於電容器的比電容值理論計算。
電容器組裝前負極LVP+AC都經過預鋰化步驟,在電流密度0.1Ag-1下,預鋰化至最低電位0.1V。實驗中使用四種LVP+AC/ LVP+AC重量比例(1/1、2/1、3/1、4/1)作為比較,並得知重量比例為1/1、電位窗口4.0 V,放電電流密度為0.03 Ag-1時,可得到最大能量密度68.4 Whkg-1,比電容值為38.2 Fg-1。
LCO+AC/LVP+AC(1/1)電容器,在電位窗口3.5 V的最高比能量 36.8 Whkg-1 (0.02Ag-1),比電容值為29.5 Fg-1,最高比功率4.2 kW kg-1 (3Ag-1)。當電位窗口擴大到4.0V時,最高比能量70.3 Whkg-1 (0.02Ag-1),比電容值為34.3 Fg-1,最高比功率5.2 kWkg-1 (3Ag-1)。


The internal parallel hybrid capacitors assemble with the bi-material electrodes which contain both electrochemical capacitor material and battery materials. In this study, we conduct many electrochemical property measurements on internal parallel hybrid capacitors.
We use sol-gel method to synthesis the amphoteric material, Li3V2(PO4)3. The phase of Li3V2(PO4)3 is analyzed with X-ray diffraction, and the structure is correspond to JCPDS 04-016-1666.
As the negative electrode, Li3V2(PO4)3 hybrid with activated carbon must be prelithiated before its assembly. We use the end potential of prelithiation process 0.1V vs. Li/Li+ at 0.1Ag-1. Then, we compare the charge/discharge performance of four cells with the LVP+AC/LVP+AC mass ratio, 1:1, 2:1, 3:1, 4:1. The maximum specific energy of the LVP+AC/LVP+AC capacitor is measured with a mass ratio of 1:1 for positive and negative electrodes. At the specific current 0.03 Ag-1, the LVP+AC/LVP+AC capacitor demonstrates 68.4 Whkg-1 in the 4.0 window, and the specific capacitance demonstrates 38.2 Fg-1.
The other side, we change the positive electrode and assemble LCO+AC/LVP+AC capacitor with 1:1 mass ratio. At the specific current 0.02 Ag-1, the LCO+AC/LVP+AC capacitor demonstrates 36.8 Whkg-1 in the 3.5 window, and the specific capacitance demonstrates 29.5 Fg-1. When the window increases to 4.0V, the specific energy increases to 70.3 Whkg-1, and the specific capacitance demonstrates 34.3 Fg-1.

摘要 I ABSTRACT III 目錄 V 第一章 序論 1 1.1 前言 1 1.2 研究動機 5 第二章 文獻回顧 6 2.1 電化學電容器與鋰離子電池 6 2.2 電化學儲能混成方式 11 2.2.1 外部混合式系統(External hybrid systems) 11 2.2.2 內部串聯混成式系統(Internal serial hybrid systems) 11 2.2.2.1 鋰離子混成式電容器 (Lithium-ion capacitors) 11 2.2.3 內部並聯混成式系統(Internal parallel hybrid systems) 12 2.3 LI3V2(PO4)3兩性材料 16 2.3.1 Li3V2(PO4)3的結構 16 2.3.2 Li3V2(PO4)3的合成方法 18 2.3.3 Li3V2(PO4)3的正極充放電機制 20 2.3.4 Li3V2(PO4)3的負極充放電機制 24 2.4 電解液種類 25 2.4.1 水性電解液 (Aqueous electrolyte) 25 2.4.2 有機電解液 (Organic electrolyte) 25 2.4.3 離子液體 (Ionic liquid) 26 第三章 實驗方法與步驟 27 3.1 實驗藥品耗材與儀器設備 27 3.1.1 實驗藥品及耗材 27 3.1.2 分析儀器 33 3.2 實驗流程 34 3.2.1 活性材料合成 34 3.2.2 漿料製備 35 3.2.3 電極片製作 37 3.2.4 電化學測試載具組裝 38 3.2.5 電化學量測流程 39 3.3 實驗方法 40 3.3.1 活性材料Li3V2(PO4)3的合成 40 3.3.2 漿料c- LVP780-mix製備 41 3.3.3 漿料c- LVP780-mix+AC製備 42 3.3.4 漿料LiCoO2+AC製備 42 3.3.5 電流收集器清洗及準備工作 43 3.3.6 電極片製備 44 3.3.7 電化學測量載具組裝 45 3.4 電極材料鑑定與分析 46 3.4.1 X光繞射分析 46 3.4.2 電化學特性分析 46 3.4.2.1 單電極充、放電量測 46 3.4.2.2 恆電流充、放電量測(Galvanic charge -discharge) 46 3.4.2.3 循環穩定性測試(Cycle stability) 47 3.4.2.4 電化學交流阻抗量測(AC impedance) 48 3.4.3 電化學計算分析 49 第四章 結果與討論 51 4.1 LI3V2(PO4)3兩性材料 51 4.1.1 X光繞射分析 51 4.2 單電極充放電特性分析 54 4.2.1 LVP負極材料的單電極充放電特性分析 54 4.2.1.1 充放電五圈後的XRD分析 54 4.2.1.2 充、放電平台位置 56 4.2.1.3 不同C-rate下的比電量及庫倫效率關係 58 4.2.2 c-LVP正極材料的單電極充放電特性分析 60 4.2.3 雙材料電極的充放電特性分析 62 4.3 內部並聯混成式電容器的電化學性質分析 64 4.3.1 LVP+AC/LVP+AC恆電流充放電分析 64 4.3.2 LVP+AC/LVP+AC 放電特性分析 68 4.3.3 LVP+AC/LVP+AC正負極個別電位分析 71 4.3.3.1 LVP+AC/LVP+AC(1/1)正負極個別電位分析 73 4.3.3.2 LVP+AC/LVP+AC(2/1)正負極個別電位分析 75 4.3.3.3 LVP+AC/LVP+AC(3/1)正負極個別電位分析 77 4.3.3.4 LVP+AC/LVP+AC(4/1)正負極個別電位分析 79 4.3.4 LVP+AC/LVP+AC循環穩定性測試 81 4.3.5 LCO+AC/LVP+AC(1/1)恆電流充放電分析 83 4.3.6 LCO+AC/LVP+AC(1/1)放電特性分析 85 4.3.7 LCO+AC/LVP+AC(1/1)正負極個別電位分析 88 4.3.8 電化學交流阻抗分析 91 4.3.8.1 半電池交流阻抗分析 91 4.3.8.2 內部並聯混成電容器交流阻抗分析 92 第五章 結論 94 第六章 參考文獻 96

1. Rui, X., et al., Li3V2(PO4)3 cathode materials for lithium-ion batteries: A review. Journal of Power Sources, 2014. 258: p. 19-38.
2. Fergus, J.W., Recent developments in cathode materials for lithium ion batteries. Journal of Power Sources, 2010. 195(4): p. 939-954.
3. Shukla, A.K., et al., Electrochemical capacitors: Technical challenges and prognosis for future markets. Electrochimica Acta, 2012. 84: p. 165-173.
4. R. Koぴtz, M.C., Principles and applications of electrochemical capacitors. Electrochimica Acta, 2000.
5. Cericola, D. and R. Kötz, Hybridization of rechargeable batteries and electrochemical capacitors: Principles and limits. Electrochimica Acta, 2012. 72: p. 1-17.
6. Cericola, D., et al., Hybridization of electrochemical capacitors and rechargeable batteries: An experimental analysis of the different possible approaches utilizing activated carbon, Li4Ti5O12 and LiMn2O4. Journal of Power Sources, 2011. 196(23): p. 10305-10313.
7. Böckenfeld, N., et al., The influence of activated carbon on the performance of lithium iron phosphate based electrodes. Electrochimica Acta, 2012. 76: p. 130-136.
8. Böckenfeld, N. and A. Balducci, On the use of lithium vanadium phosphate in high power devices. Journal of Power Sources, 2013. 235: p. 265-273.
9. Mao, W.f., et al., Configuration of Li-Ion Vanadium Batteries: Li3V2(PO4)3(cathode) Li3V2(PO4)3(anode). ECS Electrochemistry Letters, 2013. 2(7): p. A69-A71.
10. Jiang, T., et al., Effects of synthetic route on the structural, physical and electrochemical properties of Li3V2(PO4)3 cathode materials. Solid State Ionics, 2009. 180(9-10): p. 708-714.
11. Qiao, Y.Q., et al., Electrochemical performance of Li3V2(PO4)3/C cathode materials using stearic acid as a carbon source. Electrochimica Acta, 2011. 56(5): p. 2269-2275.
12. Wang, J., et al., Long-term cyclability and high-rate capability of Li3V2(PO4)3/C cathode material using PVA as carbon source. Electrochimica Acta, 2010. 55(22): p. 6879-6884.
13. Rui, X.H., et al., The Li3V2(PO4)3/C composites with high-rate capability prepared by a maltose-based sol–gel route. Electrochimica Acta, 2010. 55(22): p. 6761-6767.
14. Wang, J., et al., Electrochemical performance of Li3V2(PO4)3/C cathode material using a novel carbon source. Electrochimica Acta, 2009. 54(26): p. 6451-6454.
15. Chen, Y., et al., Preparation and electrochemical performance studies on Cr-doped Li3V2(PO4)3 as cathode materials for lithium-ion batteries. Electrochimica Acta, 2009. 54(24): p. 5844-5850.
16. Kuang, Q., et al., Synthesis and electrochemical properties of Co-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries. Electrochimica Acta, 2010. 55(5): p. 1575-1581.
17. Qiao, Y.Q., et al., Synthesis of plate-like Li3V2(PO4)3/C as a cathode material for Li-ion batteries. Journal of Power Sources, 2011. 196(20): p. 8706-8709.
18. Duan, W., et al., Li3V2(PO4)3@C core-shell nanocomposite as a superior cathode material for lithium-ion batteries. Nanoscale, 2013. 5(14): p. 6485-90.
19. Li, D., et al., Three-dimensionally ordered macroporous Li3V2(PO4)3/C nanocomposite cathode material for high-capacity and high-rate Li-ion batteries. Nanoscale, 2014. 6(6): p. 3302-8.
20. Liu, H., et al., Kinetics of conventional carbon coated-Li3V2(PO4)3 and nanocomposite Li3V2(PO4)3/graphene as cathode materials for lithium ion batteries. Journal of Materials Chemistry, 2012. 22(22): p. 11039.
21. Rui, X.H., C. Li, and C.H. Chen, Synthesis and characterization of carbon-coated Li3V2(PO4)3 cathode materials with different carbon sources. Electrochimica Acta, 2009. 54(12): p. 3374-3380.
22. Wang, L., X. Zhou, and Y. Guo, Synthesis and performance of carbon-coated Li3V2(PO4)3 cathode materials by a low temperature solid-state reaction. Journal of Power Sources, 2010. 195(9): p. 2844-2850.
23. Zhang, L.-L., et al., High-performance Li3V2(PO4)3/C cathode materials prepared via a sol–gel route with double carbon sources. Journal of Alloys and Compounds, 2012. 513: p. 414-419.
24. Tang, A., X. Wang, and S. Yang, A novel method to synthesize Li3V2(PO4)3/C composite and its electrochemical Li intercalation performances. Materials Letters, 2008. 62(21-22): p. 3676-3678.
25. C. Deng, S.Z., Z. Dong, Y. Gao, Y. Shang1, Y. H. Sun, Effects of Carbon Coating on the Structure, Morphology and Electrochemical Performance of Li3V2(PO4)3 Cathode Material Prepared by Solid State Method. International Journal of ELECTROCHEMICAL SCIENCE, 2012.
26. Li, Y., et al., Electrochemical performance of nanocrystalline Li3V2(PO4)3/carbon composite material synthesized by a novel sol–gel method. Electrochimica Acta, 2006. 51(28): p. 6498-6502.
27. Li, Y., et al., A promising sol–gel route based on citric acid to synthesize Li3V2(PO4)3/carbon composite material for lithium ion batteries. Electrochimica Acta, 2007. 52(15): p. 4922-4926.
28. Böckenfeld, N. and A. Balducci, The influence of carbon content on the lithium diffusion and electrochemical properties of lithium vanadium phosphate. Journal of Applied Electrochemistry, 2013. 44(4): p. 467-474.
29. Fan, C.-l., et al., Influences of the molecular structure of carbon sources on the structure, morphology and performances of the Li3V2(PO4)3–C cathode for lithium ion batteries. New Journal of Chemistry, 2014. 38(9): p. 4336.
30. Zhou, X., Y. Liu, and Y. Guo, One-step synthesis of Li3V 2(PO4)3 /C positive material with high performance for lithium-ion batteries. Solid State Communications, 2008. 146(5-6): p. 261-264.
31. Zhou, X., Y. Liu, and Y. Guo, Effect of reduction agent on the performance of Li3V2(PO4)3/C positive material by one-step solid-state reaction. Electrochimica Acta, 2009. 54(8): p. 2253-2258.
32. Jiang, T., et al., Carbon coated Li3V2(PO4)3 cathode material prepared by a PVA assisted sol–gel method. Electrochimica Acta, 2010. 55(12): p. 3864-3869.
33. Wang, L., et al., Li3V2(PO4)3/C cathode material prepared via a sol–gel method based on composite chelating reagents. Journal of Power Sources, 2012. 204: p. 197-199.
34. Ko, Y.N., et al., Characteristics of Li3V2(PO4)3/C powders prepared by ultrasonic spray pyrolysis. Journal of Power Sources, 2011. 196(16): p. 6682-6687.
35. Chen, Q., et al., Li3V2(PO4)3/C nanofibers composite as a high performance cathode material for lithium-ion battery. Journal of Power Sources, 2013. 234: p. 197-200.
36. Wang, W., et al., A compromise of electrochemical performances of Li3V2(PO4)3/C upon cycling within a suitable potential range. Electrochimica Acta, 2014. 116: p. 490-494.
37. Zhang, X., et al., Revisiting Li3V2(PO4)3as an anode – an outstanding negative electrode for high power energy storage devices. J. Mater. Chem. A, 2014. 2(42): p. 17906-17913.
38. Rui, X.H., et al., Determination of the chemical diffusion coefficient of Li+ in intercalation-type Li3V2(PO4)3 anode material. Solid State Ionics, 2011. 187(1): p. 58-63.
39. Rui, X.H., N. Yesibolati, and C.H. Chen, Li3V2(PO4)3/C composite as an intercalation-type anode material for lithium-ion batteries. Journal of Power Sources, 2011. 196(4): p. 2279-2282.
40. Myung, S.-T., Y. Hitoshi, and Y.-K. Sun, Electrochemical behavior and passivation of current collectors in lithium-ion batteries. Journal of Materials Chemistry, 2011. 21(27): p. 9891.

無法下載圖示 全文公開日期 2020/07/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE