簡易檢索 / 詳目顯示

研究生: 王貞元
Jhen-yuan Wang
論文名稱: 火災偵測和區域定位應用於影像監控
Fire detection and region location in surveillance image
指導教授: 蘇順豐
Shun-Feng Su
口試委員: 郭景明
Jing-Ming Guo
張志永
Jyh-Yeong Chang
王偉彥
Wei-Yen Wang
莊鎮嘉
Chen-Chia Chuang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 57
中文關鍵詞: 火焰偵測影像處理
外文關鍵詞: fire detection, image process
相關次數: 點閱:195下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

火災容易造成重大傷亡與損失,因此一套良好的火焰偵測系統是有必要的。本論文採用結合傳統影像處理所用的色彩擷取火焰像素和飽和度變化量的關係,進行火焰的判斷和確認位置。其處理流程如下,首先將影像進行火焰像素的擷取,將火焰像素組成一個區域進行分析,利用火焰的飽和度特性進行區域內的標記,透過標記的位置來分辨火焰且定位出火焰在影像中的位子。


The fire accident causes economical damage as well as endangering the life of people, so a set of good system of fire detection is necessary. In this thesis, we will combine traditional image process in fire detection and relation of the variation of saturation for flame to deal with fire recognition and fire location. It deals with procedure as follows. First, extraction of the fire pixels in image, and to analyze the region from fire pixels, to label the saturation for fire region by the property of saturation for flame, recognition of fire and orientation of fire location.

摘要 I 致謝 II Abstract III Contents IV List of Figures VI List of tables VIII Chapter 1 Introduction 1 1.1 Research motivation 1 1.2 Research objective 2 1.3 Chapter outlines 3 Chapter 2 Background and Color Space Model 4 Background and Color Space Model 4 2.1 Color Space Model 4 2.1.1 RGB Color Space Model 4 2.1.2 YCbCr Color Space Model 5 2.1.3 HSI Color Space Model 5 2.2 Previous Image Based Fire Detection Approaches 8 Chapter 3 Fire Detection System 10 Fire Detection System 10 3.1 Extraction of Fire Pixels 10 3.2 Fire Region Identification 14 3.2.2 Morphological Technique 17 3.2.3 Region Filling 21 3.3 Size Filter 23 3.4 Component Labeling for Clustering 24 Chapter 4 Fire Region Location 29 4.1 Fire Core Process 29 4.1.1 Variation of Saturation 29 4.1.2 Fire Core Detection 32 4.2 Fire Recognition 36 4.3 Fire Region Location 38 Chapter 5 Simulation Results 41 5.1 The Result of Fire Detection and Region Location 41 5.1.1 Identification of Real-Fire Images 41 5.1.2 Simulation of Fire-Like Image 46 5.2 Simulation of Light 49 5.3 Comparison to Traditional Methods 51 5.4 The Classification of Fire 51 Chapter 6 Conclusions and Future Work 53 6.1 Conclusions 53 6.2 Future Work 54 Reference 55

[1] Y. Cappellini, L. Mattii, and A. Mecocci, “An intelligent system for automatic fire detection in forests,” IEEE 3th International Conference on Image Processing and ifs Applications, pp. 563-570, 1989.
[2] P. Guillemant and J. Vicente, “Real-time identification of smoke images by clustering motions on a fractal curve with a temporal embedding method,” Optical Engineering, vol. 40, no. 4, pp. 554–563, 2001.
[3] B. U. Toreyin, Y. Dedeoglu, and A. E. Cetin, “Wavelet based real-time smoke detection in video,” 13th European Signal Processing Conference EUSIPCO, 2005.
[4] I. Kopilovic, B. Vagvolgyi, and T. Sziranyi, “Application of panoramic annular lens fur motion analysis tasks: surveillance and smoke detection,” IEEE International Conference on Pattern Recognition, pp. 714-717, 2000.
[5] G. Healey, D. Slatcr, T. Lin, B. Drda, and A. D. Goedeke, “A system for real-time fire detection,” Proceedings of the IEEE Conference on Computer W o n and Pattern Recognition, pp. 605-606, 1994.
[6] H. Yamagishi and J. Yamaguchi, “Fire flame detection algorithm using a color camera,” Proceedings of the 1999 International Symposium on Micro- Mechatmnics and Human Science, pp.-255-260, 1999.
[7] W. Phillips III, M. Shah. and N. da Vitoria Lobo. “Flame recognition in video,” Proceedings of the Fifth IEEE Workshop on Applications of Computer Vision, pp. 224-229, 2000.
[8] W.-B. Homg and J.-W. Peng, “Real-time fire detection from video: A preliminary report,” 14th IPPR, Computer Vision, Graphics and Image Processing, pp. 1-5, 2001.
[9] T. H. Chen, C. L. Kao and S. M. Chang, “An intelligent real-time fire-detection method based on video processing,” Proceedings of the IEEE 37th Annual.
[10] S. Noda and K. Ueda. ”Fire detection in tunnels using an image processing method,” Proceedings of the 1994 Vehicle Navigation and Information System Conference, pp. 57-62, 1994.
[11] S.Y. Foo. “A machine vision approach to detect and categorize Hydrocarbon fires in aircraft dry bays and engine compart-ments,” IEEE Transactions on Industry, Applications., vol. 36, no. 2, pp. 549466, MARCH/APRIL, 2000.
[12] C.B. Liu and N. Ahuja, "Vision based fire detection", Proceedings of the 17th International Conference on Pattern Recognition, IEEE Press, Cambridge UK, pp.134-137, 2004.
[13] H. Yamagishi and J. Yamaguchi, “A contour fluctuation data processing method for fire flame detection using a color camera” 26th Annual Conference of the IEEE IECON, 2000.
[14] W.-B. Horng; J.-W.n Peng; and C.-Y. Chen. “A new image-based real-time flame detection method using color analysis,” Proceedings of the 2005 IEEE.
[15] Rafael C. Gonzalez and Richard E. Wood, Digital Image Processing, 2Ed. New Jersey: Prentice Hall, 2002.
[16] 消防署防災宣導網, http://210.69.173.9/nfa_web/show/show.aspx?pid=376
[17] Trier and T. Taxt, “Evaluation of binarization methods for document images,” IEEE Trans. On Pattern Analysis and Machine Intelligence, vol. 17.
[18] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Systems, Man, and Cybernetics, vol. 9, no. 1 , pp. 62-66, 1979.
[19] G. Sharms and H. J. Trussell, “Digital color imaging,” IEEE Trans. Image Processing, vol. 6, pp. 901–932, July 1997.
[20] J. N. Kapur, P. K. Sahoo, and A. K. C. Wong, “A new method for graylevel picture thresholding using the entropy of the histogram,” Comput. Vis., Graph., Image Process., vol. 29, pp. 273–285, 1985
[21] J. Bernsen, “Dynamic thresholding of gray-level images,” Proc. 8th Int. Conf. Pattern Recognition, pp. 1251–1255, Paris, 1986.
[22] Z. Lu, “Detection of text region from digital engineering drawings,” IEEE Trans. Pattern Anal. Machine Intell., vol. 20, pp. 31–439, Apr. 1998.
[23] J. Ohya, A. Shio, and S. Akamatsu, “Recognizing characters in scene images,” IEEE Trans. Pattern Anal. Machine Intell., vol. 6, pp. 215–220, Feb. 1994.
[24] L. Wang and T. Pavlidis, “Direct gray-scale extraction of features for character ecognition,” IEEE Trans. Pattern Anal. Machine Intell., vol. 15, pp. 1053–1067, Oct. 1993.
[25] F. M. Wahl, K. Y. Wong, and R. G. Casey, “Block segmentation and text extraction in mixed text/image documents,” Comput. raph. Image Process., vol. 20, pp. 375–390, 1982.
[26] D. S. Bloomberg, “Multiresolution morphological analysis of document images,” Proc. SPIE Visual Communication Image Processing, vol. 1818, pp. 648–662, 1992.
[27] K. K. Chin and J. Saniie, “Morphological processing for feature extraction,” Proc. SPIE, vol. 2030, pp. 288–302, 1993.
[28] S. E. Umbaugh, Y. Wei, and M. Zuke, “Feature extraction in image analysis,” IEEE Eng. Med. Biol. Mag., vol. 16, no. 4, pp. 62–73, 1997.
[29] Y. M. Y. Hasan and L. J. Karam, “Morphological reversible contour representation,” IEEE Trans. Pattern Anal. Machine Intell., vol. 22, pp. 227–240, Mar. 2000.
[30] C. Ballester, V. Caselles, J. Verdera, M. Bertalmio, and G. Sapiro, “A variational model for filling-in gray level and color images,” Proc. Int. Conf. Computer Vision, Vancouver, BC, Canada, June 2001, pp. 10–16.
[31] R. Bornard, E. Lecan, L. Laborelli, and J.-H. Chenot, “Missing data correction in still images and image sequences,” ACM Multimedia, France, Dec. 2002.
[32] A grawal, L. Nekludova, and W. Lim, “A parallel O(1ogN) algorithm for finding connected components in planar images,” Proc. Int. Con$ Parallel Processing, 1987, pp. 783-786.
[33] K. Agrawala and A. V. Kulkarni, “A sequential approach to the extraction of shape features,” Comput. Graphics Image Processing, vol. 6, pp. 538-5.57, 1977.
[34] T. D. Grove, K. D. Baker and T. N. Tan, “Color based object tracking,” Proc. of 14th Conf. on Pattern Recognition, pp 1442-1444,1998.
[35] Y. Ren, C. S. Chua and Y. K. Ho, “Multiple model Bawd Human Tracking,” Proc. of IEEE Conf. on Visual Interface, pp 280285, 2000.
[36] Y. Wu and T. S. Huang, “Color tracking by transductive learning,” Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, pp 113-137, 2000.

QR CODE