簡易檢索 / 詳目顯示

研究生: 鄭又嘉
YU-CHIA CHENG
論文名稱: 永磁式同步發電機散熱設計之數值與實驗整合研究
Integrated Numerical and Experimental Study on Thermal Management of Permanent Magnet Synchronous Generator
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 陳呈芳
none
黃仲欽
Jonq-Chin Hwang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 中文
論文頁數: 273
中文關鍵詞: 永磁式同步發電機散熱設計
外文關鍵詞: permanent magnet synchronous generator, thermal design
相關次數: 點閱:178下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前風力發電機方面的相關研究,多半是以水平軸風力發電機為主,至於發電機的選用則以雙饋式感應發電機與永磁式同步發電機為主流,其中本文探討之永磁式同步發電機具有效率高、噪音低與體積小等優點,且最大特點是在轉子之激磁部分採用銣鐵硼(NdFeB)永久磁石,故不需要額外的激磁電路;但永久磁石之去磁曲線對溫度有較敏感的變化,往往因為發電機的過熱問題,導致永久磁石的性能衰退以及線圈繞組的燒毀,進而造成發電機之效率降低與使用壽命縮短,有鑑於此,如何設計出有效地散熱方式來解決發電機之溫升需求,即成為本研究之主要目標。本文首先探討發電機之發熱瓦數,其損失主要可分類為銅損、鐵損、機械損與雜散損,其中鐵損值之估算是藉由電磁場解析套裝軟體(Maxwell_2D)之磁路分析結果推算;其在無載運轉時之鐵損為24.2W,而在三相各別加載28Ω運轉時之鐵損為24W、銅損為64.45W,故總消耗瓦數為88.45W,而預估整體發電機效率為93%。
    接著本研究利用計算流體力學分析軟體Fluent,針對原型永磁式同步發電機進行模擬分析,並與實驗量測之結果相互驗證;比較結果顯示模擬與實驗之差值在2.5℃內,且整體發電機之最高溫區域皆為線圈繞組,綜合其它文獻之結論,此足以證明本文建構之數值模型與模擬方法具有相當之可信度。最後針對發電機之過熱區域進行改善規劃,藉由改良發電機外殼之鰭片樣式來解決散熱問題;由模擬結果可知,徑向鰭片之散熱效益優於軸向鰭片,當發電機處於自然對流時,能使線圈繞組之溫度降到78℃。同時考量現實情況中,發電機的運轉是藉由風能驅使其運作,因此可以預期發電機會在有風的狀態下運轉,經由數值模擬計算可知;當發電機處於12米風時,在徑向鰭片上開孔之散熱模組,能使線圈繞組之溫度降到49℃,其溫度遠低於永久磁石的耐溫範圍(80℃)。總結來說,本文在發熱瓦數的估算、數值模型的建構以及模擬方法上,藉由實驗量測與數值模擬分析結果之相互驗證,其已具有相當良好之可信度,對於日後研究人員在探討發電機之散熱情況,將會有可信賴的設計工具與參考應用依據。


    The researches of wind generator are giving first place to horizontal axis wind generator in the world nowadays. Then the mainly options of generators are double-fed induction generator and permanent magnet synchronous generator. The permanent magnet synchronous generator in this thesis has following advantages: high efficiency, low noise and small volume, etc. The most important characteristic is the excited part of rotor uses permanent magnet(NdFeB) so that we don’t need extra excited circuits. But magnetization curve of permanent magnet is sensitive to temperature. The problem of generator overheat cause the efficiency of permanent magnet declined and the devastation of winding so that reduce the efficiency and life of generator. So, the main purpose of this thesis is to design an effective method of thermal to overcome the elevated temperature of generator. This thesis investigates the generator power dissipation first and the lost can be classified into copper loss, core loss, mechanical losses and stray losses. The core loss is calculated by magnetization analysis result of electromagnetic field analysis software Maxwell_2D. The core loss is 24.2W in no load operation, but core loss is 24W and copper loss is 64.45W when it operates in adding 28Ω in each phase. Total power dissipation is 88.45W, so the excepted efficiency of generator is 93%. This research uses the hydromechanics analysis software Fluent. Then compare the consequence between experiment and simulation of prototype permanent magnet synchronous generator. The consequence of comparison shows that the error values are in 2.5℃ between simulation and experiment. And the highest temperature area of whole generator is winding, it is enough to prove the simulated method and model structure are reliable in this thesis. By improving the housing and fin to solve the heat problem. We can see from simulation, radial fin of the cooling efficiency then axial fins when generator in natural convection. Can reduce the temperature of winding to nearly 78℃. At last, improve the thermal of overheat area of generator. In reality, the generator is operated by wind. So, we can except the generator will operate in windy state. When the generator is in 12m wind environment, can reduce the temperature of winding to nearly 49℃ and its temperature is much lower than temperature range of permanent magnet (80℃). In the end, although the accuracy of calculated power disspation can not reach 100%, it still shows the really good reliability by consequence of comparison between experiment and simulation basically. For researchers, it can save lots of time to develop the products and be a reference for choosing fit temperature range of permanent magnet in raising temperature situation of generators and motors.

    摘要I AbstractIII 致謝V 目錄VII 圖索引XIII 表索引XXI 符號索引XXIII 第一章 緒論1 1.1 前言1 1.2 風力發電機簡介6 1.2.1 水平軸與垂直軸風力發電機7 1.2.2 風力發電機佈置型式14 1.3 風力發電機之散熱方式與技術發展21 1.4 文獻回顧27 1.4.1 散熱鰭片之設計與應用29 1.4.2 數值方法相關研究30 1.5 研究動機與方法32 第二章 永磁式同步發電機簡介37 2.1 永磁式同步發電機之幾何結構37 2.1.1 永磁式同步發電機之定子結構40 2.1.2 永磁式同步發電機之轉子結構42 2.2 永磁式同步發電機磁性材料之選用48 2.2.1 鐵心材料48 2.2.2 磁石材料49 2.3 永磁式同步發電機之設計53 2.4 永磁式同步發電機之發熱瓦數計算63 2.4.1 銅損計算66 2.4.2 鐵損計算70 2.4.3 機械損與雜散損76 第三章 物理模式與理論分析79 3.1 熱傳遞原理79 3.1.1 熱傳導80 3.1.2 熱對流81 3.2 熱阻定義82 3.3 自然對流下之散熱鰭片設計85 3.3.1 流體流動型態之判定85 3.3.2 散熱鰭片之最佳間距 88 3.3.3 散熱鰭片之最大熱傳量估算95 第四章 數值方法97 4.1 統御方程式97 4.2 紊流模式理論 102 4.3 數值計算方法104 4.3.1 離散化(Discretization)方式104 4.3.2 速度與壓力耦合的處理109 4.3.3 數值求解流程112 4.4 數值邊界條件114 第五章 永磁式同步發電機之性能與溫度量測117 5.1 實驗設備117 5.2 永磁式同步發電機之性能量測 123 5.3 永磁式同步發電機之溫度量測133 第六章 原型永磁式同步發電機之散熱分析145 6.1 發電機之模型建立與網格建構145 6.1.1 發電機之模型建立148 6.1.2 網格建構與獨立性驗證153 6.2 數值模擬分析與實驗驗證156 6.2.1 原型發電機之熱流場模擬分析158 6.2.2 加入接觸熱阻之模擬分析168 6.3 原型發電機在封閉狀態與提高環溫之模擬分析179 6.3.1 封閉狀態下之模擬分析179 6.3.2 提高環境溫度之模擬分析183 第七章 永磁式同步發電機之散熱改良設計189 7.1 外殼與散熱模組設計189 7.2 自然對流之模擬分析194 7.2.1 方案A之模擬分析198 7.2.2 方案B之模擬分析198 7.2.3 方案C之模擬分析202 7.3 有風速情況下之模擬分析211 7.3.1 方案A之模擬分析213 7.3.2 方案B之模擬分析219 7.3.3 方案C之模擬分析225 第八章 結論與建議235 8.1 結論235 8.2 建議237 參考文獻239 作者簡介243

    [1] 世界風能協會,http://www.wwindea.org。
    [2] 中國風能協會,http://www.cwea.org.cn/main.asp。
    [3] 陳正合,“風力發電之應用和效應”,台電月刊,527期, 30-33頁,2006年。
    [4] 經濟部能源局,http://www.moeaboe.gov.tw/。
    [5] 羅際航,“具不同翼型葉片的水平式風力機之數值模擬”,國立台灣科技大學機械工程系碩士論文,2006年。
    [6] Manwell, J. F., MoGowan, J. G. and Rogers, A. L., “Wind Energy Explained”, England, 2002.
    [7] 謝智宏,“再生能源發電規劃(一)風力電廠工程規劃”,台電工程月刊,614期,24-38頁,1999年。
    [8] 藍偉庭,“風力發電市場與技術發展概觀”,財團法人工業技術研究院,2007年。
    [9] 經濟部能源科技研究發展計劃,“風力機關鍵元件開發計畫”,計畫編號:95-D0245,第10頁,2007年。
    [10] http://www.mem.com.tw。
    [11] 中國科學院電工研究所,“一種蒸發冷卻風力發電機定子”,申請號:200510086794.9,2005年。
    [12] 南京航空航太大學,“採用蒸發迴圈冷卻的風力發電機”,申請號:200610039658.9,2006年。
    [13] 南京航空航太大學,“集中冷卻式風力發電機系統”,申請號:200610097464.4,2006年。
    [14] 西門子公司,“風力發電設備和冷卻風力發電設備中發電機的方法”,申請號:98811452.6,1998年。
    [15] Morrison, A. T., “Optimization of Heat Sink Fin Geometries for Heat Sinks in Natural Convection”, InterSociety Conference on Thermal Phenomena, pp. 145-148, 1992.
    [16] Morega, A. M. and Bejan, A., “Plate Fins with Variable Thickness and Height for Air-Cooled Electronic Modules”, Int. J. Heat Mass Transfer, Vol. 37, pp. 433-445, 1994.
    [17] Bejan, A., Tsatsaronis, G., and Moran, M., “Thermal Design and Optimization”, Wiley, pp. 241-256, 1996.
    [18] Bar-Cohen, A., Iyengar, M., and Kraus, A. D., “Design of Optimum Plate-Fin Natural Convective Heat Sinks”, Journal of Electronic Packaging, Vol. 125, pp. 208-216, June 2003.
    [19] Rahnama, Mohammad and Farhadi, Mousa, “Effect of Radial Fins on Two-Dimensional Turbulent Natural Convection in a Horizontal Annulus”, International Journal of Thermal Sciences, Vol. 43, pp. 255-264, 2004.
    [20] Shanel, M., Pickering, S. J., and Lampard, D., “Conjugate Heat Transfer Analysis of a Salient Pole Rotor in an Air Cooled Synchronous Generator”, Electric Machines and Drives Conference, 2003. IEMDC'03. IEEE International.
    [21] 周封,熊斌,李偉力,程樹康,“大型電機定子三維流體場計算及其對溫度場分佈的影響”,中國電機工程學報,25卷,24期,2005年。
    [22] 李偉力,靳慧勇,丁樹業,熊斌,“大型同步發電機定子多元流場與表面散熱係數數值計算與分析”,中國電機工程學報,25卷,23期,2005年。
    [23] 周封,管春偉,李偉力,趙芬,“鐵耗和環流損耗分布對定子溫度場及絕緣外表面散熱係數計算的影響”,中國電機工程學報,29卷,21期,2009年。
    [24] 蕭鈞毓,“六相及雙三相繞組永磁式同步電機之分析及設計”,國立台灣科技大學電機工程系碩士論文,2007年。
    [25] 唐任遠,“現代永磁電機理論與設計”,機械工業出版社,北京,1997年。
    [26] 廖福益,小型馬達技術,全華書局,2003年。
    [27] 劉昌煥,“電機機械”,東華書局,2002年。
    [28] Fitzgerald, A. E., Kingsley Jr. C., and Umans, S. D., “Electric Machinery”, 6th Edition, McGraw-Hill, 2003.
    [29] 簡伯烜,“應用於電梯之永磁式同步電動機設計及驅動系統研製”, 國立台灣科技大學電機工程系碩士論文,2011年。
    [30] Hanselman, D. “Brushless Permanent Magnet Motor Design”, The Writer’s Collective, USA , 2003.
    [31] Lienhard, J. H. Ⅳ and Lienhard, J. H. Ⅴ, “A Heat Transfer Textbook”, 3rd Ed., Cambridge, Massachusetts, U.S.A., 2001.
    [32] Bejan, A., Tsatsaronis, G., and Moran, M., "Thermal Design and Optimization", Wiley, pp. 241-256, 1996.
    [33]Churchill, S. W. and Chu, H. S., "Correlating Equations for Laminar and Turbulent Free Convection from a Vertical Plate", Int. J. Heat Mass Transfer, Vol. 18, pp. 1323-1329, 1975.
    [34] Fluent 6.2 User’s Guide, Fluent Inc., 2005
    [35] Launder, B. E. and Spalding, D. B., “Lectures in Mathematical Models of Turbulence, ”Academic Press, London, England, 1972.

    QR CODE