簡易檢索 / 詳目顯示

研究生: 邱旻慧
Min-Huei Chiou
論文名稱: 分析三維列印光固化樹脂之組成與化學結構的影響
The Effects of Photo-resin Composition and Chemistry in 3D Printing
指導教授: 何明樺
Ming-Hua Ho
口試委員: 陳崇賢
Chorng-Shyan Chern
鄭逸琳
Yih-Lin Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 中文
論文頁數: 174
中文關鍵詞: 三維列印光固化樹脂組成與化學結構的影響機械性質生物相容性生醫材料
外文關鍵詞: 3D printing, Photo-resin, biocompatibility, mechanical property, composition, biomedical materials
相關次數: 點閱:491下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

3D ( Three Dimensional)列印技術因具客製化及擅長製作複雜形狀實體的特性而盛行聞名,尤其是光固化系統的解析度與精細度更是獨佔鰲頭,常被應用於生醫領域,此時在此系統中的光敏樹脂扮演了舉足輕重的角色。然而,現今光聚合的材料生物相容性多不佳,難以在臨床上被應用。在本實驗中,則採用臨床常用的高生物相容性寡聚物進行末端改質進而開發新型快速成型的光敏樹脂,寡聚物末端經由酯化作用接上不同密度的光反應官能基碳碳雙鍵(C=C),使之聚合後的交聯密度不同,同時可藉由混和具生物相容性的稀釋劑或交聯劑調整聚合物的黏度以及機械性質,配方比例的調配不同以往的作法是可先將混合物的機械性質表現先利用Kwei或Gordon-Taylor equation進行預測,縮短試誤法所耗費的時間與原料,且在本實驗系統中,楊氏係數的調整範圍可由300kPa至2.8GPa,應用範圍相當廣泛。與商業化牙材相比,不論是生物相容性,又或者機械性質的表現都超越許多。


The technology of 3D printing is well-known for offering customized service and being good at complex shaping. Especially, the light curing system including DLP (Digital Light Processing) and SLA (Stereolithography Apparatus) shows the excellent resolution and accuracy allowing applications in biomedical field. Besides, the photo-resin plays an important role in the ligh curing system. However, most of photo-resins used now are not biocompatible enough and their mechanical properties are not well-controlled. In this research, in order to develope novel photo-resin for rapid prototyping, biocompatible oligomers approved by FDA were modified by grafting photo-reactive functional groups C=C at the ends of the chains. At the same time, the density of photo-reactive groups was controlled by applying different oligomer compositions. Additionally, we could also adjust the rheology and mechanical propertie of resin by blending with several monomers or crosslinkers. Moreover, Kwei and Gorden-Taylor equations were used to predict the mechanical strength of photo-cured resins systematically. In this study, the Young’s modulus was able to to be controlled from 300kPa to 2.8GPa, which was more superior to commercial resins. The culture of 7F2 and L929 also indicated that the photo-resin was very biocompatible with controllable cell affinity.

摘要 I Abstract II 致謝 III 目錄 V 圖目錄 X 表目錄 XXII 方程式目錄 XXIII 專有名詞縮寫 XXIV 第一章 緒論 1 第二章 文獻回顧 3 2.1 積層製造介紹 3 2.1.1 積層製造的發展現況與未來趨向 3 2.1.2 積層製造系統的種類 4 2.2 光固化系統的優勢 7 2.2.1 光固化系統於生醫產業的應用 7 2.2.2 光固化樹脂應用於牙醫 8 2.2.3 目前光敏性樹脂的發展趨勢 9 2.3 光固化樹脂的主要成分 10 2.3.1 寡聚物 11 2.3.2 單體 12 2.3.3 光起始劑 14 2.4 自由基型聚合的反應機制 16 2.4.1 Initiation(起始) 16 2.4.2 Propagation(成長) 17 2.4.3 Termination(終止) 18 2.5 影響固化速率的因素 19 2.5.1 寡聚物本身的性質 19 2.5.2 光起始劑的含量 20 2.5.3 UV燈源之強度、波長 21 2.5.4 層膜之厚度 21 2.5.5 熱 22 2.5.6 氧阻聚 23 2.6 機械性質與玻璃轉移溫度之間的相關性 24 2.7 預測混合物玻璃轉移溫度的方程式 25 2.7.1 Flory-Fox equation 25 2.7.2 Fox equation 27 2.7.3 Gordon-Taylor equation 28 2.7.4 Kwei equation 29 2.7.5 Kelley-Bueche equation 29 第三章 實驗材料與方法 31 3.1 實驗藥品 31 3.2 實驗儀器 32 3.3 實驗材料與流程 34 3.3.1 寡聚物的合成 35 3.3.2 樹脂配方及混合方式 36 3.4 材料鑑定與性質檢測 37 3.4.1 傅立葉轉換紅外線光譜儀(FTIR)分析 37 3.4.2 拉伸試驗 38 3.4.3 黏度測試 40 3.4.4 降解測試 42 3.4.5 熱重量分析測試(TGA) 43 3.4.6 熱示差掃描分析儀(DSC) 44 3.5 體外細胞測試 44 3.5.1 檢測方式與操作 44 3.5.2 光固化材料試片製作 46 3.5.3 細胞來源 47 3.5.4 細胞培養 48 3.5.5 細胞冷凍保存 49 3.5.6 細胞解凍及培養 50 3.5.7 細胞計數 51 3.5.8 粒線體活性測試 52 3.5.9 細胞骨架染色 56 第四章 結果與討論 57 4.1 材料的黏度性質分析 57 4.1.1 溫度對寡聚物的黏度影響 57 4.1.2 反應型稀釋劑濃度對黏度的影響 61 4.2 傅立葉轉換紅外線光譜儀(FTIR)的分析 67 4.2.1 IR光譜分析 67 4.2.2 PCL17的轉化率 79 4.2.3 PPG的轉化率 80 4.2.4 Si的轉化率 82 4.3 聚合物的降解性質 85 4.3.1 光反應性官能基的密度對降解性質的影響 85 4.3.2 不同種類聚合物的降解特性 90 4.4 材料熱性質分析與預測 93 4.4.1 寡聚物與寡聚物混合後Tg的分析與預測 93 4.4.2 寡聚物與稀釋劑混合後Tg的分析與預測 104 4.4.3 探討調整參數與混合物分子間作用力的關係 116 4.5 材料的機械性質分析 121 4.5.1 寡聚物分子量與結構對機械性質的影響 121 4.5.2 稀釋單體或交聯劑對材料的機械性質影響 123 4.5.3 具抗凍特性的聚合物機械性質 130 4.5.4 聚合物機械性質與其玻璃轉移溫度的相關性 132 4.6 材料生物相容性檢測 142 4.6.1 寡聚物的化學結構對生物相容性的影響 142 4.6.2 光起始劑的生物相容性 151 4.7 與商業化產品的比較 154 4.7.1 商業化牙科材料的機械性質比較 154 第五章 結論 157 參考文獻 159

1. Gibson, I., D.W. Rosen, and B. Stucker, Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing. Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing. 2010, Berlin: Springer-Verlag Berlin. 1-459.
2. Lu, B., D. Li, and X. Tian, Development Trends in Additive Manufacturing and 3D Printing. Engineering, 2015. 1(1): p. 085-089.
3. Wohlers, T.T. and W. Associates, Wohlers Report 2013: Additive Manufacturing and 3D Printing State of the Industry : Annual Worldwide Progress Report. 2013: Wohlers Associates.
4. Temple, J.P., D.L. Hutton, B.P. Hung, P.Y. Huri, C.A. Cook, R. Kondragunta, X. Jia, and W.L. Grayson, Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds. J Biomed Mater Res A, 2014. 102(12): p. 4317-25.
5. Peltola, S.M., F.P.W. Melchels, D.W. Grijpma, and M. Kellomaki, A review of rapid prototyping techniques for tissue engineering purposes. Annals of Medicine, 2008. 40(4): p. 268-280.
6. Salmi, M., K.S. Paloheimo, J. Tuomi, J. Wolff, and A. Makitie, Accuracy of medical models made by additive manufacturing (rapid manufacturing). Journal of Cranio-Maxillofacial Surgery, 2013. 41(7): p. 603-609.
7. Klammert, U., U. Gbureck, E. Vorndran, J. Rodiger, P. Meyer-Marcotty, and A.C. Kubler, 3D powder printed calcium phosphate implants for reconstruction of cranial and maxillofacial defects. Journal of Cranio-Maxillofacial Surgery, 2010. 38(8): p. 565-570.
8. Giannatsis, J. and V. Dedoussis, Additive fabrication technologies applied to medicine and health care: a review. The International Journal of Advanced Manufacturing Technology, 2007. 40(1-2): p. 116-127.
9. Salmi, M., K.S. Paloheimo, J. Tuomi, J. Wolff, and A. Makitie, Accuracy of medical models made by additive manufacturing (rapid manufacturing). J Craniomaxillofac Surg, 2013. 41(7): p. 603-9.
10. Li, X., R. Cui, L. Sun, K.E. Aifantis, Y. Fan, Q. Feng, F. Cui, and F. Watari, 3D-Printed Biopolymers for Tissue Engineering Application. International Journal of Polymer Science, 2014. 2014: p. 1-13.
11. Rengier, F., A. Mehndiratta, H. von Tengg-Kobligk, C.M. Zechmann, R. Unterhinninghofen, H.U. Kauczor, and F.L. Giesel, 3D printing based on imaging data: review of medical applications. International Journal of Computer Assisted Radiology and Surgery, 2010. 5(4): p. 335-341.
12. Mandrycky, C., Z.J. Wang, K. Kim, and D.H. Kim, 3D bioprinting for engineering complex tissues. Biotechnology Advances, 2016. 34(4): p. 422-434.
13. Schiller, G.J. and Ieee, Additive Manufacturing for Aerospace. 2015 Ieee Aerospace Conference, 2015: p. 8.
14. Murr, L.E., Frontiers of 3D Printing/Additive Manufacturing: from Human Organs to Aircraft Fabrication†. Journal of Materials Science & Technology, 2016. 32(10): p. 987-995.
15. Chia, H.N. and B.M. Wu, Recent advances in 3D printing of biomaterials. Journal of Biological Engineering, 2015. 9: p. 14.
16. Frazier, W.E., Metal Additive Manufacturing: A Review. Journal of Materials Engineering and Performance, 2014. 23(6): p. 1917-1928.
17. Gao, W., Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C.B. Williams, C.C.L. Wang, Y.C. Shin, S. Zhang, and P.D. Zavattieri, The status, challenges, and future of additive manufacturing in engineering. Computer-Aided Design, 2015. 69: p. 65-89.
18. Wang, S.H.M., Y.R. Qu, C.C.A. Chen, and S.P. Chang, A Survey of Sustainable Design-Centered Integration for Medical Additive Manufacturing. Advanced Materials Research, 2014. 939: p. 635-643.
19. Rajic, A., E. Desnica, S. Stojadinovic, and D. Nedelcu, Numerical simulation and additive manufacturing technology in design of knee implant patterns. Journal of Optoelectronics and Advanced Materials, 2014. 16(9-10): p. 1180-1190.
20. Melgoza, E.L., G. Vallicrosa, L. Sereno, J. Ciurana, and C.A. Rodriguez, Rapid tooling using 3D printing system for manufacturing of customized tracheal stent. Rapid Prototyping Journal, 2014. 20(1): p. 2-12.
21. Jardini, A.L., M.A. Larosa, R. Maciel Filho, C.A. Zavaglia, L.F. Bernardes, C.S. Lambert, D.R. Calderoni, and P. Kharmandayan, Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing. J Craniomaxillofac Surg, 2014. 42(8): p. 1877-84.
22. Skrobot, J. and M. El Fray, PHOTOSENSITIVE INJECTABLE SYSTEMS FOR BIOMEDICAL APPLICATIONS. Polimery, 2010. 55(4): p. 267-276.
23. Grijpma, D.W., F.P.W. Melchels, Q. Hou, and J. Feijen, Methacrylate-Functionalized Oligomers Based On Lactide, E-Caprolactone And Trimethylene Carbonate For Application In Stereo-Lithography. Materials Research Innovations, 2013. 10(3): p. 321-330.
24. Cheng, Y.L., Y.K. Yang, and J.Y. Hou, PREPARATION AND CHARACTERIZATION OF PHOTO-CURABLE PCL/PEG-DIACRYLATE FOR ADDITIVE MANUFACTURING TISSUE ENGINEERING SCAFFOLD APPLICATION. Proceedings of the 1st International Conference on Progress in Additive Manufacturing, ed. C.C. Kai, et al. 2014, Singapore: Research Publishing Services. 447-452.
25. Cheng, Y.L., C.J. Hsueh, and S.H. Hsiang, Fabrication of Photo-Polymerized PCL Tissue Engineering Scaffolds by Dynamic Masking Rapid Prototyping System. Materials Science Forum, 2013. 750: p. 125-129.
26. Mohtaram, N.K., M. Imani, S. Sharifi, H. Mobedi, and M. Atai, Novel, Biocompatible and Photo Crosslinkable Polymeric Networks based on Unsaturated Polyesters: Optimization of the Network Properties, in 4th European Conference of the International Federation for Medical and Biological Engineering, J. VanderSloten, et al., Editors. 2009, Springer: New York. p. 2182-2185.
27. Chung, C.M., M.S. Kim, J.G. Kim, and D.O. Jang, Synthesis and photopolymerization of trifunctional methacrylates and their application as dental monomers. Journal of biomedical materials research, 2002. 62(4): p. 622-627.
28. Shaker, M.A., J.J. Dore, and H.M. Younes, Synthesis, characterization and cytocompatibility of a poly(diol-tricarballylate) visible light photo-cross-linked biodegradable elastomer. J Biomater Sci Polym Ed, 2010. 21(4): p. 507-28.
29. Hazeveld, A., J. Slater, and Y.J. Ren, Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques. American Journal of Orthodontics and Dentofacial Orthopedics, 2014. 145(1): p. 108-115.
30. Salmi, M., K.S. Paloheimo, J. Tuomi, T. Ingman, and A. Makitie, A digital process for additive manufacturing of occlusal splints: a clinical pilot study. Journal of the Royal Society Interface, 2013. 10(84): p. 6.
31. Ligon-Auer, S.C., M. Schwentenwein, C. Gorsche, J. Stampfl, and R. Liska, Toughening of photo-curable polymer networks: a review. Polymer Chemistry, 2016. 7(2): p. 257-286.
32. Leprince, J.G., W.M. Palin, M.A. Hadis, J. Devaux, and G. Leloup, Progress in dimethacrylate-based dental composite technology and curing efficiency. Dental Materials, 2013. 29(2): p. 139-156.
33. Park, J.M., T.K. Yi, J.Y. Koak, S.K. Kim, E.J. Park, and S.J. Heo, Comparison of Five-Axis Milling and Rapid Prototyping for Implant Surgical Templates. International Journal of Oral & Maxillofacial Implants, 2014. 29(2): p. 374-383.
34. Stansbury, J.W. and M.J. Idacavage, 3D printing with polymers: Challenges among expanding options and opportunities. Dental Materials, 2016. 32(1): p. 54-64.
35. Chen, M.H., Update on Dental Nanocomposites. Journal of Dental Research, 2010. 89(6): p. 549-560.
36. Lu, H., J.W. Stansbury, J. Nie, K.A. Berchtold, and C.N. Bowman, Development of highly reactive mono-(meth)acrylates as reactive diluents for dimethacrylate-based dental resin systems. Biomaterials, 2005. 26(12): p. 1329-1336.
37. Crivello, J.V. and E. Reichmanis, Photopolymer Materials and Processes for Advanced Technologies. Chemistry of Materials, 2014. 26(1): p. 533-548.
38. Raquez, J.M., M. Deleglise, M.F. Lacrampe, and P. Krawczak, Thermosetting (bio)materials derived from renewable resources: A critical review. Progress in Polymer Science, 2010. 35(4): p. 487-509.
39. Decker, C., Kinetic study and new applications of UV radiation curing. Macromolecular Rapid Communications, 2002. 23(18): p. 1067-1093.
40. Decker, C., Photoinitiated crosslinking polymerisation. Progress in Polymer Science, 1996. 21(4): p. 593-650.
41. Nowers, J.R., J.A. Costanzo, and B. Narasimhan, Structure-property relationships in acrylate/epoxy interpenetrating polymer networks: Effects of the reaction sequence and composition. Journal of Applied Polymer Science, 2007. 104(2): p. 891-901.
42. Park, Y.J., D.H. Lim, H.J. Kim, D.S. Park, and I.K. Sung, UV- and thermal-curing behaviors of dual-curable adhesives based on epoxy acrylate oligomers. International Journal of Adhesion and Adhesives, 2009. 29(7): p. 710-717.
43. Wang, Q.F. and W.F. Shi, Photopolymerization and thermal behaviors of acrylated benzenephosphonates/epoxy acrylate as flame retardant resins. European Polymer Journal, 2006. 42(10): p. 2261-2269.
44. Park, C.H., S.W. Lee, J.W. Park, and H.J. Kim, Preparation and characterization of dual curable adhesives containing epoxy and acrylate functionalities. Reactive & Functional Polymers, 2013. 73(4): p. 641-646.
45. Yang, C., Y. Chang, and Z.G. Yang, Preparation and characterization of printable solder resist inks based on hyperbranched polyester. Journal of Applied Polymer Science, 2015. 132(15): p. 8.
46. Zhang, H., T.Y. Zhao, P. Duffy, Y.X. Dong, A. Ni Annaidh, E. O'Cearbhaill, and W.X. Wang, Hydrolytically Degradable Hyperbranched PEG-Polyester Adhesive with Low Swelling and Robust Mechanical Properties. Advanced Healthcare Materials, 2015. 4(15): p. 2260-2268.
47. Zhang, Y., H. Miao, and W.F. Shi, Photopolymerization behavior and properties of highly branched polyester acrylate containing thioether linkage used for UV curing coatings. Progress in Organic Coatings, 2011. 71(1): p. 48-55.
48. Nishikubo, T., E. Takehara, and A. Kameyama, NOVEL THERMAL CURING REACTIONS OF EPOXY-RESIN AND POLYURETHANE OLIGOMERS USING PHOTO-GENERATED POLYFUNCTIONAL AMINES. Polymer Journal, 1993. 25(4): p. 421-425.
49. Zhang, Y., A. Asif, and W.F. Shi, Highly branched polyurethane acrylates and their waterborne UV curing coating. Progress in Organic Coatings, 2011. 71(3): p. 295-301.
50. Nishikubo, T., E. Takehara, and A. Kameyama, PHOTOGENERATION OF POLYFUNCTIONAL AMINES AND NOVEL THERMAL CURING REACTIONS OF EPOXY-RESIN AND POLYURETHANE OLIGOMER USING THESE AMINES. Journal of Polymer Science Part a-Polymer Chemistry, 1993. 31(12): p. 3013-3020.
51. Kim, H.G., D.H. Oh, H.B. Lee, and K.E. Min, Effect of reactive diluents on properties of unsaturated polyester/montmorillonite nanocomposites. Journal of Applied Polymer Science, 2004. 92(1): p. 238-242.
52. Lizotte, J.R. and T.E. Long, Stable free radical polymerization kinetics of alkyl acrylate monomers using in situ FTIR spectroscopy: Influence of hydroxyl-containing monomers and additives. Macromolecular Chemistry and Physics, 2004. 205(5): p. 692-698.
53. Sanai, Y., Y. Morita, Y. Asano, K. Ishizaki, and K. Kubota, Chain-End Lactonization of Polyacrylates Prepared by Photopolymerization. Journal of Polymer Science Part a-Polymer Chemistry, 2014. 52(8): p. 1161-1171.
54. Yildiz, E., H. Guclu, H. Yildirim, A. Kuyulu, and A. Gungor, EFFECTS OF REACTIVE DILUENTS ON MECHANICAL AND PHYSICAL-PROPERTIES OF A UV CURABLE ACRYLATED URETHANE PREPOLYMER. Angewandte Makromolekulare Chemie, 1995. 230: p. 105-115.
55. Yoshii, F., K. Makuuchi, S. Kikukawa, T. Tanaka, J. Saitoh, and K. Koyama, High-melt-strength polypropylene with electron beam irradiation in the presence of polyfunctional monomers. Journal of Applied Polymer Science, 1996. 60(4): p. 617-623.
56. Scherzer, T. and U. Decker, The effect of temperature on the kinetics of diacrylate photopolymerizations studied by real-time FTIR spectroscopy. Polymer, 2000. 41(21): p. 7681-7690.
57. Ali, K.M.I., M.A. Khan, M.M. Zaman, and M.A. Hossain, REACTIVE DILUENT EFFECT ON PROPERTIES OF UV-CURED FILMS. Journal of Applied Polymer Science, 1994. 54(3): p. 309-315.
58. Endruweit, A., M.S. Johnson, and A.C. Long, Curing of composite components by ultraviolet radiation: A review. Polymer Composites, 2006. 27(2): p. 119-128.
59. Crivello, J.V., The discovery and development of onium salt cationic photoinitiators. Journal of Polymer Science Part a-Polymer Chemistry, 1999. 37(23): p. 4241-4254.
60. Tunc, D. and Y. Yagci, Thioxanthone-ethylcarbazole as a soluble visible light photoinitiator for free radical and free radical promoted cationic polymerizations. Polymer Chemistry, 2011. 2(11): p. 2557-2563.
61. Xiao, P., J. Zhang, F. Dumur, M.A. Tehfe, F. Morlet-Savary, B. Graff, D. Gigmes, J.P. Fouassier, and J. Lalevee, Visible light sensitive photoinitiating systems: Recent progress in cationic and radical photopolymerization reactions under soft conditions. Progress in Polymer Science, 2015. 41: p. 32-66.
62. Corrales, T., F. Catalina, C. Peinado, and N.S. Allen, Free radical macrophotoinitiators: an overview on recent advances. Journal of Photochemistry and Photobiology a-Chemistry, 2003. 159(2): p. 103-114.
63. Kuo, K.H., W.Y. Chiu, and T.M. Don, Kinetic behavior of photo‐polymerization of UV‐curable resins with carboxylic acid and amino groups. Journal of applied polymer science, 2010. 115(4): p. 1982-1994.
64. Moad, G., J. Chiefari, R.T.A. Mayadunne, C.L. Moad, A. Postma, E. Rizzardo, and S.H. Thang, Initiating free radical polymerization. Macromolecular Symposia, 2002. 182: p. 65-80.
65. Andrzejewska, E., Photopolymerization kinetics of multifunctional monomers. Progress in Polymer Science, 2001. 26(4): p. 605-665.
66. Jakubiak, J. and J.F. Rabek, Kinetics modeling of linear and crosslinking photopolymerizations - Part II. Overall rate of polymerization (including initiation, propagation and termination steps). Polimery, 2000. 45(10): p. 659-663.
67. Kaczmarek, H. and I. Vukovic-Kwiatkowska, Preparation and characterization of interpenetrating networks based on polyacrylates and poly (lactic acid). eXPRESS Polymer Letters, 2012. 6(1): p. 78-94.
68. Yu, Q., S. Nauman, J. Santerre, and S. Zhu, Photopolymerization behavior of di (meth) acrylate oligomers. Journal of materials science, 2001. 36(15): p. 3599-3605.
69. Ogliari, F.A., C. Ely, C.L. Petzhold, F.F. Demarco, and E. Piva, Onium salt improves the polymerization kinetics in an experimental dental adhesive resin. Journal of dentistry, 2007. 35(7): p. 583-587.
70. Lecamp, L., B. Youssef, C. Bunel, and P. Lebaudy, Photoinitiated polymerization of a dimethacrylate oligomer: 1. Influence of photoinitiator concentration, temperature and light intensity. Polymer, 1997. 38(25): p. 6089-6096.
71. Keller, L., C. Decker, K. Zahouily, S. Benfarhi, J. Le Meins, and J. Miehe-Brendle, Synthesis of polymer nanocomposites by UV-curing of organoclay–acrylic resins. Polymer, 2004. 45(22): p. 7437-7447.
72. Studer, K., C. Decker, E. Beck, and R. Schwalm, Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting, Part I. Progress in Organic Coatings, 2003. 48(1): p. 92-100.
73. Studer, K., C. Decker, E. Beck, and R. Schwalm, Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting: Part II. Progress in Organic Coatings, 2003. 48(1): p. 101-111.
74. Biliaderis, C., A. Lazaridou, and I. Arvanitoyannis, Glass transition and physical properties of polyol-plasticised pullulan–starch blends at low moisture. Carbohydrate Polymers, 1999. 40(1): p. 29-47.
75. Pillin, I., N. Montrelay, and Y. Grohens, Thermo-mechanical characterization of plasticized PLA: Is the miscibility the only significant factor? Polymer, 2006. 47(13): p. 4676-4682.
76. Peng, Z., B. Olson, R. Srithawatpong, J. McGervey, A. Jamieson, H. Ishida, T. Meier, and A. Halasa, Study of free volume in high-vinyl polybutadiene/cis-polyisoprene blends using positron annihilation spectroscopy. Journal of Polymer Science-B-Polymer Physics Edition, 1998. 36(5): p. 861-872.
77. Penzel, E., J. Rieger, and H.A. Schneider, The glass transition temperature of random copolymers .1. Experimental data and the Gordon-Taylor equation. Polymer, 1997. 38(2): p. 325-337.
78. Francis, B., S. Thomas, J. Jose, R. Ramaswamy, and V.L. Rao, Hydroxyl terminated poly(ether ether ketone) with pendent methyl group toughened epoxy resin: miscibility, morphology and mechanical properties. Polymer, 2005. 46(26): p. 12372-12385.
79. Pomposo, J.A., I. Eguiazabal, E. Calahorra, and M. Cortazar, GLASS-TRANSITION BEHAVIOR AND INTERACTIONS IN POLY(P-VINYLPHENOL) POLYMETHACRYLATE BLENDS. Polymer, 1993. 34(1): p. 95-102.
80. Paris, R. and J.L. De la Fuente, Glass transition temperature of allyl methacrylate-n-butyl acrylate gradient copolymers in dependence on chemical composition and molecular weight. Journal of Polymer Science Part B-Polymer Physics, 2007. 45(14): p. 1845-1855.
81. Her, L.M. and S.L. Nail, MEASUREMENT OF GLASS-TRANSITION TEMPERATURES OF FREEZE-CONCENTRATED SOLUTES BY DIFFERENTIAL SCANNING CALORIMETRY. Pharmaceutical Research, 1994. 11(1): p. 54-59.
82. Fox Jr, T.G. and P.J. Flory, Second‐order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. Journal of Applied Physics, 1950. 21(6): p. 581-591.
83. Markovitz, H., Thomas G. Fox 1921–1977. Rheologica Acta, 1978. 17(3): p. 207-209.
84. Puskas, J.E., Y.H. Chen, K. Kulbaba, G. Kaszas, and A. Soleymannezhad, Effect of the molecular weight and architecture on the size and glass transition of arborescent polyisobutylenes. Journal of Polymer Science Part a-Polymer Chemistry, 2006. 44(5): p. 1770-1776.
85. Hiemenz, P.C. and T.P. Lodge, Polymer chemistry. 2007: CRC press.
86. Ogawa, T., Effects of molecular weight on mechanical properties of polypropylene. Journal of applied polymer science, 1992. 44(10): p. 1869-1871.
87. Fox, T. and S. Loshaek, Influence of molecular weight and degree of crosslinking on the specific volume and glass temperature of polymers. Journal of Polymer Science, 1955. 15(80): p. 371-390.
88. Lazaridou, A., C.G. Biliaderis, and V. Kontogiorgos, Molecular weight effects on solution rheology of pullulan and mechanical properties of its films. Carbohydrate Polymers, 2003. 52(2): p. 151-166.
89. Tsavalas, J.G. and D.C. Sundberg, Hydroplasticization of Polymers: Model Predictions and Application to Emulsion Polymers. Langmuir, 2010. 26(10): p. 6960-6966.
90. Backfolk, K., R. Holmes, P. Ihalainen, P. Sirvio, N. Triantafillopoulos, and J. Peltonen, Determination of the glass transition temperature of latex films: Comparison of various methods. Polymer Testing, 2007. 26(8): p. 1031-1040.
91. Shi, Y. and S.A. Jabarin, Class-transition and melting behavior of poly(ethylene terephthalate)/poly(ethylene 2,6-naphthalate) blends. Journal of Applied Polymer Science, 2001. 81(1): p. 11-22.
92. Biliaderis, C.G., R.S. Swan, and I. Arvanitoyannis, Physicochemical properties of commercial starch hydrolyzates in the frozen state. Food Chemistry, 1999. 64(4): p. 537-546.
93. Lezcano, E.G., D.R. de Arellano, M.G. Prolongo, and C.S. Coll, Miscibility and interactions in poly (vinyl methyl ether)/poly(4-hydroxystyrene) blends. Polymer, 1998. 39(8-9): p. 1583-1589.
94. Koleske, J. and R. Lundberg, Lactone polymers. I. Glass transition temperature of poly‐ε‐caprolactone by means on compatible polymer mixtures. Journal of Polymer Science Part A‐2: Polymer Physics, 1969. 7(5): p. 795-807.
95. Couchman, P., Compositional variation of glass-transition temperatures. 2. Application of the thermodynamic theory to compatible polymer blends. Macromolecules, 1978. 11(6): p. 1156-1161.
96. Chen, T., A. Fowler, and M. Toner, Literature review: supplemented phase diagram of the trehalose–water binary mixture. Cryobiology, 2000. 40(3): p. 277-282.
97. Hancock, B.C. and G. Zografi, The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids. Pharmaceutical Research, 1994. 11(4): p. 471-477.
98. Lazaridou, A., C.G. Biliaderis, N. Bacandritsos, and A.G. Sabatini, Composition, thermal and rheological behaviour of selected Greek honeys. Journal of Food Engineering, 2004. 64(1): p. 9-21.
99. Gordon, M. and J.S. Taylor, Ideal copolymers and the second‐order transitions of synthetic rubbers. I. Non‐crystalline copolymers. Journal of Chemical Technology and Biotechnology, 1952. 2(9): p. 493-500.
100. Lazaridou, A. and C.G. Biliaderis, Thermophysical properties of chitosan, chitosan-starch and chitosan-pullulan films near the glass transition. Carbohydrate Polymers, 2002. 48(2): p. 179-190.
101. Gupta, P., R. Thillagavathi, A.K. Chakraborti, and A.K. Bansal, Role of molecular interaction in stability of celecoxib-PVP amorphous systems. Molecular Pharmaceutics, 2005. 2(5): p. 384-391.
102. Blasi, P., S.S. D'Souza, F. Selmin, and P.P. DeLuca, Plasticizing effect of water on poly(lactide-co-glycolide). Journal of Controlled Release, 2005. 108(1): p. 1-9.
103. Noel, T.R., R. Parker, S.G. Ring, and A.S. Tatham, THE GLASS-TRANSITION BEHAVIOR OF WHEAT GLUTEN PROTEINS. International Journal of Biological Macromolecules, 1995. 17(2): p. 81-85.
104. Zhang, G.B., J.M. Zhang, S.G. Wang, and D.Y. Shen, Miscibility and phase structure of binary blends of polylactide and poly(methyl methacrylate). Journal of Polymer Science Part B-Polymer Physics, 2003. 41(1): p. 23-30.
105. Lin, A.A., T. Kwei, and A. Reiser, On the physical meaning of the Kwei equation for the glass transition temperature of polymer blends. Macromolecules, 1989. 22(10): p. 4112-4119.
106. Kuo, S.W., C.F. Huang, and F.C. Chang, Study of hydrogen-bonding strength in poly(epsilon-caprolactone) blends by DSC and FTIR. Journal of Polymer Science Part B-Polymer Physics, 2001. 39(12): p. 1348-1359.
107. Isasi, J.R., E. Meaurio, C. Cesteros, and I. Katime, Miscibility and specific interactions in blends of poly (2‐ethyl‐2‐oxazoline) with hydroxylated polymethacrylates. Macromolecular Chemistry and Physics, 1996. 197(2): p. 641-649.
108. Kuo, S.W. and H.T. Tsai, Complementary Multiple Hydrogen-Bonding Interactions Increase the Glass Transition Temperatures to PMMA Copolymer Mixtures. Macromolecules, 2009. 42(13): p. 4701-4711.
109. Wu, H.L., C.C.M. Ma, F.Y. Liu, C.Y. Chen, S.J. Lee, and C.L. Chiang, Preparation and characterization of poly(ether sulfone)/sulfonated poly(ether ether ketone) blend membranes. European Polymer Journal, 2006. 42(7): p. 1688-1695.
110. Kuo, S.W., S.C. Chan, H.D. Wu, and F.C. Chang, An unusual, completely miscible, ternary hydrogen-bonded polymer blend of phenoxy, phenolic, and PCL. Macromolecules, 2005. 38(11): p. 4729-4736.
111. Kelley, F.N. and F. Bueche, Viscosity and glass temperature relations for polymer‐diluent systems. Journal of Polymer Science, 1961. 50(154): p. 549-556.
112. Francis, B., S. Thomas, S.P. Thomas, R. Ramaswamy, and V.L. Rao, Diglycidyl ether of bisphenol-A epoxy resin-polyether sulfone/polyether sulfone ether ketone blends: phase morphology, fracture toughness and thermo-mechanical properties. Colloid and Polymer Science, 2006. 285(1): p. 83-93.
113. Mueller, F., S. Naeem, and G. Sadowski, Toluene Sorption in Poly(styrene) and Poly(vinyl acetate) near the Glass Transition. Industrial & Engineering Chemistry Research, 2013. 52(26): p. 8917-8927.
114. Francis, B., V.L. Rao, S. Jose, B.K. Catherine, R. Ramaswamy, J. Jose, and S. Thomas, Poly(ether ether ketone) with pendent methyl groups as a toughening agent for amine cured DGEBA epoxy resin. Journal of Materials Science, 2006. 41(17): p. 5467-5479.
115. Peng, Z.L., B.G. Olson, R. Srithawatpong, J.D. McGervey, A.M. Jamieson, and H. Ishida, Positron annihilation lifetime studies of free volume in miscible high-vinyl polybutadiene/cis-polyisoprene blends, in Positron Annihilation: Icpa-11 - Proceedings of the 11th International Conference on Positron Annihilation, Kansas City, Missouri, USA, May 1997, Y.C. Jean, et al., Editors. 1997, Transtec Publications Ltd: Zurich-Uetikon. p. 339-341.
116. Lu, X. and R. Weiss, Relationship between the glass transition temperature and the interaction parameter of miscible binary polymer blends. Macromolecules(USA), 1992. 25(12): p. 3242-3246.
117. Park, Y.J., D.H. Lim, H.J. Kim, D.S. Park, and I.K. Sung, UV- and thermal-curing behaviors of dual-curable adhesives based on epoxy acrylate oligomers. International Journal of Adhesion and Adhesives, 2009. 29(7): p. 710-717.
118. John, G. and M. Morita, Synthesis and characterization of photo-cross-linked networks based on L-lactide/serine copolymers. Macromolecules, 1999. 32(6): p. 1853-1858.
119. Kaczmarek, H. and I. Vukovic-Kwiatkowska, Preparation and characterization of interpenetrating networks based on polyacrylates and poly(lactic acid). Express Polymer Letters, 2012. 6(1): p. 78-94.
120. Apohan, K.N., A. Amanoel, N. Arsu, and A. Güngör, Synthesis and characterization of UV-curable vinyl ether functionalized urethane oligomers. Progress in Organic Coatings, 2004. 49(1): p. 23-32.
121. Kim, D., D.G. Lee, J.C. Kim, C.S. Lim, N.S. Kong, J.H. Kim, H.W. Jung, S.M. Noh, and Y.I. Park, Effect of molecular weight of polyurethane toughening agent on adhesive strength and rheological characteristics of automotive structural adhesives. International Journal of Adhesion and Adhesives, 2017. 74: p. 21-27.
122. Denograro, F.F., P. Guerrero, M.A. Corcuera, and I. Mondragon, EFFECTS OF CHEMICAL-STRUCTURE OF HARDENER ON CURING EVOLUTION AND ON THE DYNAMIC-MECHANICAL BEHAVIOR OF EPOXY-RESINS. Journal of Applied Polymer Science, 1995. 56(2): p. 177-192.
123. Bassett, A.W., D.P. Rogers, J.M. Sadler, J.J. La Scala, R.P. Wool, and J.F. Stanzione, The effect of impurities in reactive diluents prepared from lignin model compounds on the properties of vinyl ester resins. Journal of Applied Polymer Science, 2016. 133(45): p. 10.
124. Hunt, P.A., Why does a reduction in hydrogen bonding lead to an increase in viscosity for the 1-butyl-2,3-dimethyl-imidazolium-based ionic liquids? Journal of Physical Chemistry B, 2007. 111(18): p. 4844-4853.
125. Bhargava, R., S.Q. Wang, and J.L. Koenig, Studying polymer-dispersed liquid-crystal formation by FTIR spectroscopy. 1. Monitoring curing reactions. Macromolecules, 1999. 32(26): p. 8982-8988.
126. Scherzer, T., Photopolymerization of acrylates without photoinitiators with short-wavelength UV radiation: A study with real-time Fourier transform infrared spectroscopy. Journal of Polymer Science Part a-Polymer Chemistry, 2004. 42(4): p. 894-901.
127. Halvorson, R.H., R.L. Erickson, and C.L. Davidson, Energy dependent polymerization of resin-based composite. Dental Materials, 2002. 18(6): p. 463-469.
128. Bai, C.Y., X.Y. Zhang, J.B. Dai, and W.H. Li, A new UV curable waterborne polyurethane: Effect of C C content on the film properties. Progress in Organic Coatings, 2006. 55(3): p. 291-295.
129. Zhang, H., J. Nie, G. Muhyodin, and X. Zhu, The effect of solvent on postcuring in free radical photopolymerization. Journal of Applied Polymer Science, 2017. 134(2).
130. Sideridou, I., V. Tserki, and G. Papanastasiou, Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials, 2002. 23(8): p. 1819-1829.
131. Matsumoto, A., Free-radical crosslinking polymerization and copolymerization of multivinyl compounds. Synthesis and Photosynthesis, 1995. 123: p. 41-80.
132. Peutzfeldt, A., Resin composites in dentistry: The monomer systems. European Journal of Oral Sciences, 1997. 105(2): p. 97-116.
133. Nguyen, K.D., W.V. Megone, D. Kong, and J.E. Gautrot, Ultrafast diffusion-controlled thiol–ene based crosslinking of silicone elastomers with tailored mechanical properties for biomedical applications. Polymer Chemistry, 2016. 7(33): p. 5281-5293.
134. Gu, P.Z., G. Yang, S.C. Lee, and J.K. Lee, Thermal Characterization of Epoxy Nanocomposites Containing Polyhedral Oligomeric Silsesquioxane: Glass Transition Temperature and Chemical Conversion. Fibers and Polymers, 2017. 18(1): p. 131-139.
135. Lee, K.Y., K.H. Bouhadir, and D.J. Mooney, Controlled degradation of hydrogels using multi-functional cross-linking molecules. Biomaterials, 2004. 25(13): p. 2461-2466.
136. Mitchell, S.M., J.L. Ullman, A.L. Teel, and R.J. Watts, pH and temperature effects on the hydrolysis of three beta-lactam antibiotics: Ampicillin, cefalotin and cefoxitin. Science of the Total Environment, 2014. 466: p. 547-555.
137. Lin, W.H., R.H. Vora, and T.S. Chung, Gas transport properties of 6FDA‐durene/1, 4‐phenylenediamine (pPDA) copolyimides. Journal of Polymer Science Part B: Polymer Physics, 2000. 38(21): p. 2703-2713.
138. Anderson, J.M. and M.S. Shive, Biodegradation and biocompatibility of PLA and PLGA microspheres. Advanced Drug Delivery Reviews, 1997. 28(1): p. 5-24.
139. Hattori, Y., T. Miyajima, M. Sakai, Y. Nagase, and N. Nemoto, Synthesis and thermal characterization of novel adamantane-based polysiloxane. Polymer, 2008. 49(12): p. 2825-2831.
140. Penzel, E., J. Rieger, and H. Schneider, The glass transition temperature of random copolymers: 1. Experimental data and the Gordon-Taylor equation. Polymer, 1997. 38(2): p. 325-337.
141. McKendry, R., J.Y. Zhang, Y. Arntz, T. Strunz, M. Hegner, H.P. Lang, M.K. Baller, U. Certa, E. Meyer, H.J. Guntherodt, and C. Gerber, Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proceedings of the National Academy of Sciences of the United States of America, 2002. 99(15): p. 9783-9788.
142. Kuo, S.W., C.L. Lin, and F.C. Chang, The study of hydrogen bonding and miscibility in poly (vinylpyridines) with phenolic resin. Polymer, 2002. 43(14): p. 3943-3949.
143. Chiu, Y.C., H.C. Tsai, I. Chou, W.N. Lin, S.Y. Yang, H.W. Tien, and C.C.M. Ma, Preparation, intermolecular motion, and thermal properties of thiodiphenyl epoxy. Journal of applied polymer science, 2010. 118(4): p. 2116-2125.
144. Weng, L., R. Vijayaraghavan, D.R. MacFarlane, and G.D. Elliott, Application of the Kwei equation to model the Tg behavior of binary blends of sugars and salts. Cryobiology, 2014. 68(1): p. 155-158.
145. Safranski, D.L. and K. Gall, Effect of chemical structure and crosslinking density on the thermo-mechanical properties and toughness of (meth)acrylate shape memory polymer networks. Polymer, 2008. 49(20): p. 4446-4455.
146. Krumova, M., D. Lopez, R. Benavente, C. Mijangos, and J.M. Perena, Effect of crosslinking on the mechanical and thermal properties of poly(vinyl alcohol). Polymer, 2000. 41(26): p. 9265-9272.
147. Mollah, M.Z.I., M.A. Khan, M.A. Hoque, and A. Aziz, Studies of physico-mechanical properties of photo-cured sodium alginate with silane monomer. Carbohydrate Polymers, 2008. 72(2): p. 349-355.
148. 蘇宥齊, 製備用於三維列印之生物相容光固化樹脂. 國立台灣科技大學化學工程所碩士論文, 2016.
149. Cheng, J., J. Li, and J.Y. Zhang, Curing behavior and thermal properties of trifunctional epoxy resin cured by 4, 4'-diaminodiphenyl sulfone. Express Polymer Letters, 2009. 3(8): p. 501-509.
150. Khodkar, F. and N.G. Ebrahimi, Preparation and properties of antibacterial, biocompatible core-shell fibers produced by coaxial electrospinning. Journal of Applied Polymer Science, 2017. 134(25): p. 9.
151. Ong, Y.L., A. Razatos, G. Georgiou, and M.M. Sharma, Adhesion forces between E-coli bacteria and biomaterial surfaces. Langmuir, 1999. 15(8): p. 2719-2725.
152. Wang, Y.W., F. Yang, Q. Wu, Y.C. Cheng, P.H.F. Yu, J. Chen, and G.Q. Chen, Effect of composition of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) on growth of fibroblast and osteoblast. Biomaterials, 2005. 26(7): p. 755-761.
153. Van Landuyt, K.L., S. Krifka, K.A. Hiller, C. Bolay, C. Waha, B. Van Meerbeek, G. Schmalz, and H. Schweikl, Evaluation of cell responses toward adhesives with different photoinitiating systems. Dental Materials, 2015. 31(8): p. 916-927.

無法下載圖示 全文公開日期 2022/12/06 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE