簡易檢索 / 詳目顯示

研究生: 蕭楚澔
Chu-Hao Hsiao
論文名稱: 以近紅外光誘發非水溶性藍藻蛋白/瓊脂糖交聯物結合金奈米棒之光熱效應的藥物釋放系統
A photothermal-triggered drug release system consisting of crosslinked insoluble cyanophycin/agarose–gold nanorods hybrids by NIR irradiation
指導教授: 曾文祺
Wen-Chi Tseng
口試委員: 曾文祺
Wen-Chi Tseng
林析右
Shi-Yow Lin
陳信銘
Hsin-Ming Chen
唐建翔
Chien-Hsiang Tang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 132
中文關鍵詞: 藍藻蛋白瓊脂糖高臨界溶解溫度金奈米棒光熱效應藥物傳遞
外文關鍵詞: cyanophycin, agarose, upper critical solution temperature, gold nanorod, photothermal effect, drug delivery
相關次數: 點閱:276下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

經由基因重組過的大腸桿菌所生產的藍藻蛋白 (multi-L-arginyl-poly-L-aspartate, MAPA也被稱為cyanophycin granule polypeptide, CGP),以天門冬胺酸 (aspartic acid, Asp) 為主鏈,精胺酸 (arginine, Arg) 及離胺酸 (lysine, Lys) 為側鏈所聚合的多胜肽,是一種非核糖體合成的天然蛋白質,具有生物可降解性、酸鹼應答性及高臨界溶解溫度 (upper critical solution temperature, UCST) 特性的智能高分子。
本研究使用瓊脂糖與非水溶性藍藻蛋白利用Schiff base formation反應機制進行交聯反應,降低高分子的相轉移溫度,探討不同交聯率、不同濃度、不同酸鹼值對霧點的影響以及結合金奈米棒的光熱效應探討。
利用高分子酸鹼應答性包覆抗癌藥物阿黴素 (doxorubicin),另外結合了擁有光熱效應的金奈米棒,建立以照射近紅外光作為誘發
光熱效應使藥物傳遞系統升溫,改變UCST溫敏性高分子結構釋放阿黴素,最後測試於37 oC下含有血清環境的穩定性。


Multi-L-arginyl-poly-L-aspartate (MAPA), also known as cyanophycin, containing a backbone of polyaspartate with arginine and lysine as side chains, was prepared with recombinant Escherichia coli. MAPA is a biodegradable non-ribosomal polypeptide with pH-responsive and UCST (upper critical solution temperature)-type stimuli-responsive property.
In this study, the phase transition temperature of insoluble MAPA (iMAPA) was modified by crosslinking with agarose by Schiff base formation. This study examined the effects of different crosslinking extent, different polymer concentrations, and different pH values on the cloud point as well as a combined photothermal effect with gold nanorods.
The anti-cancer drug doxorubicin and gold nanorod were encapsulated in polymer by utilizing pH-responses of the crosslinked iMAPA/agarose. NIR irradiation can triggered the photothermal effect of gold nanorod; thus, temperature of drug release system increased. Doxorubicin could be released from polymer because of UCST-type response. Finally, the stability in serum-containing buffer was assessed at 37 oC.

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 IX 表目錄 XIII 第一章 緒論 1 第二章 文獻回顧 2 2.1 藍藻蛋白 2 2.1.1 以基因重組菌生產藍藻蛋白及純化 3 2.1.2 藍藻蛋白之應用 4 2.2 瓊脂糖 (agarose) 5 2.3 溫度敏感性高分子 7 2.3.1 溫敏性高分子之球狀-線圈狀轉換 8 2.3.2 霧點及遲滯現象 8 2.4 酸鹼應答性高分子 9 2.5 金奈米粒子 11 2.5.1 金奈米粒子簡介 11 2.5.2 金奈米球 (gold nanoparticles, AuNP) 12 2.5.3 金奈米棒 (gold nanorods, AuNR) 14 2.5.4 金奈米粒子之應用 17 第三章 實驗材料與方法 18 3.1 實驗藥品 18 3.2 實驗儀器 20 3.3 藥品配製 21 3.3.1 菌株培養 21 3.3.2 SDS-PAGE 23 3.3.3 DNS assay 24 3.3.4 非水溶性藍藻蛋白與瓊脂糖交聯反應溶液 24 3.3.5 非水溶性藍藻蛋白與瓊脂糖交聯物之交聯率測量 25 3.3.6 霧點測定溶劑 25 3.3.7 iMAPA-AG-AuNR 光熱效應探討 26 3.4 實驗步驟 27 3.4.1 菌株培養 27 3.4.2 藍藻蛋白之純化 28 3.4.3 SDS-PAGE 29 3.4.4 非水溶性藍藻蛋白與瓊脂糖交聯反應 30 3.4.5 iMAPA-AG霧點分析 36 3.4.6 金奈米之合成 37 3.4.7 iMAPA-AG-AuNR之UV-Vis圖譜分析 39 3.4.8 iMAPA-AG-AuNR之光熱效應探討 41 3.4.9 iMAPA-AG-AuNR建構之藥物傳遞系統 42 3.4.10 iMAPA-AG-AuNR建構之藥物載體粒徑分析 45 3.4.11 iMAPA-AG-AuNR建構之藥物載體於螢光顯微鏡觀察 46 3.4.12 藥物釋放 46 3.4.13 iMAPA-AG-AuNR建構之藥物傳遞系統穩定度探討 48 第四章 結果與討論 49 4.1 非水溶性藍藻蛋白與瓊脂糖交聯物分析 49 4.1.1 開環瓊脂糖之醛基量測 49 4.1.2 iMAPA-AG交聯率量測 50 4.1.3 iMAPA-AG之FTIR 分析 52 4.1.4 iMAPA-AG之NMR 分析 54 4.2 iMAPA、iMAPA-AG之霧點分析 56 4.2.1 濃度對霧點之影響 56 4.2.2 酸鹼值對霧點之影響 66 4.2.3 遲滯現象之探討 75 4.3 iMAPA-AG-AuNR之UV-Vis圖譜分析 79 4.3.1 探討不同濃度之AuNR結合iMAPA-AG之UV-Vis圖譜分析 79 4.3.2 探討不同濃度之iMAPA-AG結合AuNR之UV-Vis圖譜分析 80 4.4 iMAPA-AG結合AuNR之光熱效應探討 82 4.4.1 探討不同濃度之iMAPA-AG結合AuNR之光熱效應 82 4.4.2 探討不同濃度之AuNR結合iMAPA-AG之光熱效應 84 4.5 iMAPA-AG-AuNR建構之藥物傳遞系統探討 86 4.5.1 藥物包覆 86 4.6 iMAPA-AG-AuNR結建構之藥物載體粒徑分析 88 4.6.1 穿透式電子顯微鏡 88 4.6.2 動態光散射粒徑分析 92 4.7 iMAPA-AG-AuNR建構之藥物載體於螢光顯微鏡觀察 93 4.8 藥物釋放 95 4.9 iMAPA-AG-AuNR建構之藥物傳遞系統穩定度探討 99 4.9.1 於37 oC血清中穩定性試驗 99 結論 100 附錄 102 參考文獻 110

1. Oppermann-Sanio, F. B., & Steinbüchel, A., Occurrence, functions and biosynthesis of polyamides in microorganisms and biotechnological production. Naturwissenschaften, 2002. 89(1): p. 11-22.
2. Simon, R.D., Cyanophycin granules from the blue-green alga Anabaena cylindrica: a reserve material consisting of copolymers of aspartic acid and arginine. Proceedings of the National Academy of Sciences, 1971. 68(2): p. 265-267.
3. Simon, R. D., & Weathers, P., Determination of the structure of the novel polypeptide containing aspartic acid and arginine which is found in cyanobacteria. Biochimica et Biophysica Acta (BBA) - Protein Structure, 1976. 420(1): p. 165-176.
4. Voss, I., Diniz, S. C., Aboulmagd, E., & Steinbüchel, A., Identification of the Anabaena sp. Strain PCC7120 Cyanophycin Synthetase as Suitable Enzyme for Production of Cyanophycin in Gram-Negative Bacteria Like Pseudomonas p utida and Ralstonia e utropha. Biomacromolecules, 2004. 5(4): p. 1588-1595.
5. Ziegler, K., Diener, A., Herpin, C., Richter, R., Deutzmann, R., & Lockau, W, Molecular characterization of cyanophycin synthetase, the enzyme catalyzing the biosynthesis of the cyanobacterial reserve material multi‐L‐arginyl‐poly‐L‐aspartate (cyanophycin). European Journal of Biochemistry, 1998. 254(1): p. 154-159.
6. Aboulmagd, E., Oppermann-Sanio, F. B., & Steinbüchel, A., Molecular characterization of the cyanophycin synthetase from Synechocystis sp. strain PCC6308. Archives of Microbiology, 2000. 174(5): p. 297-306.
7. Aboulmagd, E., Voss, I., Oppermann-Sanio, F. B., & Steinbüchel, A., Heterologous expression of cyanophycin synthetase and cyanophycin synthesis in the industrial relevant bacteria Corynebacterium glutamicum and Ralstonia eutropha and in Pseudomonas putida. Biomacromolecules, 2001. 2(4): p. 1338-1342.
8. Steinle, A., Witthoff, S., Krause, J. P., & Steinbüchel, A., Establishment of cyanophycin biosynthesis in Pichia pastoris and optimization by use of engineered cyanophycin synthetases. Applied and Environmental Microbiology, 2010. 76(4): p. 1062-1070.
9. Steinle, A., Bergander, K., & Steinbüchel, A., Metabolic engineering of Saccharomyces cerevisiae for production of novel cyanophycins with an extended range of constituent amino acids. Applied and Environmental Microbiology, 2009. 75(11): p. 3437-3446.
10. Kroll, J., Klinter, S., & Steinbüchel, A., A novel plasmid addiction system for large-scale production of cyanophycin in Escherichia coli using mineral salts medium. Applied Microbiology and Biotechnology, 2011. 89(3): p. 593-604.
11. Tseng, W. C., Fang, T. Y., Cho, C. Y., Chen, P. S., & Tsai, C. S., Assessments of growth conditions on the production of cyanophycin by recombinant Escherichia coli strains expressing cyanophycin synthetase gene. Biotechnology Progress, 2012. 28(2): p. 358-363.
12. Neumann, K., Stephan, D. P., Ziegler, K., Hühns, M., Broer, I., Lockau, W., & Pistorius, E. K., Production of cyanophycin, a suitable source for the biodegradable polymer polyaspartate, in transgenic plants. Plant Biotechnology Journal, 2005. 3(2): p. 249-258.
13. Hühns, M., Neumann, K., Hausmann, T., Ziegler, K., Klemke, F., Kahmann, U., Staiger, D., Lockau, W., Pistorius, E.K. and Broer, I., Plastid targeting strategies for cyanophycin synthetase to achieve high‐level polymer accumulation in Nicotiana tabacum. Plant Biotechnology Journal, 2008. 6(4): p. 321-336.
14. Tseng, W. C., Fang, T. Y., Hsieh, Y. C., Chen, C. Y., & Li, M. C., Solubility and thermal response of fractionated cyanophycin prepared with recombinant Escherichia coli. Journal of Biotechnology, 2017. 249: p. 59-65.
15. Lang, N. J., Simon, R. D., & Wolk, C. P., Correspondence of cyanophycin granules with structured granules in Anabaena cylindrica. Archives of Microbiology, 1972. 83(4): p. 313-320.
16. Oppermann-Sanio, F. B., & Steinbüchel, A., Occurrence, functions and biosynthesis of polyamides in microorganisms and biotechnological production. Naturwissenschaften, 2002. 89(1): p. 11-22.
17. Berg, H., Ziegler, K., Piotukh, K., Baier, K., Lockau, W., & Volkmer‐Engert, R., Biosynthesis of the cyanobacterial reserve polymer multi‐L‐arginyl‐poly‐L‐aspartic acid (cyanophycin) Mechanism of the cyanophycin synthetase reaction studied with synthetic primers. European Journal of Biochemistry, 2000. 267(17): p. 5561-5570.
18. Khlystov, N. A., Chan, W. Y., Kunjapur, A. M., Shi, W., Prather, K. L., & Olsen, B. D., Material properties of the cyanobacterial reserve polymer multi-l-arginyl-poly-l-aspartate (cyanophycin). Polymer, 2017. 109: p. 238-245.
19. Wiefel, L., & Steinbüchel, A., Solubility behavior of cyanophycin depending on lysine content. Applied and Environmental Microbiology, 2014. 80(3): p. 1091-1096.
20. Sallam, A., & Steinbüchel, A., Cyanophycin‐degrading bacteria in digestive tracts of mammals, birds and fish and consequences for possible applications of cyanophycin and its dipeptides in nutrition and therapy. Journal of Applied Microbiology, 2009. 107(2): p. 474-484.
21. Schwamborn, M., Chemical synthesis of polyaspartates: a biodegradable alternative to currently used polycarboxylate homo-and copolymers. Polymer Degradation and Stability, 1998. 59(1-3): p. 39-45.
22. Hasson, D., Shemer, H., & Sher, A., State of the art of friendly “green” scale control inhibitors: a review article. Industrial & Engineering Chemistry Research, 2011. 50(12): p. 7601-7607.
23. Sallam, A., Kast, A., Przybilla, S., Meiswinkel, T., & Steinbüchel, A., Biotechnological process for production of β-dipeptides from cyanophycin on a technical scale and its optimization. Applied and Environmental Microbiology, 2009. 75(1): p. 29-38.
24. GUPTA, M., & Carr, N. G., Enzyme activities related to cyanophycin metabolism in heterocysts and vegetative cells of Anabaena spp. Microbiology, 1981. 125(1): p. 17-23.
25. Obst, M., Oppermann-Sanio, F. B., Luftmann, H., & Steinbüchel, A., Isolation of Cyanophycin-degrading Bacteria, Cloning and Characterization of an Extracellular Cyanophycinase Gene (cphE) from Pseudomonas Anguilliseptica Strain BI the cphE Gene from P. Anguilliseptica BI encodes a Cyanophycin-Hydrolyzing Enzyme. Journal of Biological Chemistry, 2002. 277(28): p. 25096-25105.
26. Trivedi, T. J., & Kumar, A., Efficient extraction of agarose from red algae using ionic liquids. Green and Sustainable Chemistry, 2014. 4(04): p. 190.
27. Garcia, R. B., Vidal, R. R., & Rinaudo, M., Preparation and structural characterization of O-acetyl agarose with low degree of substitution. Polímeros, 2000. 10(3): p. 155-161.
28. Arnott, S., Fulmer, A. S. W. E., Scott, W. E., Dea, I. C. M., Moorhouse, R., & Rees, D. A., The agarose double helix and its function in agarose gel structure. Journal of Molecular Biology, 1974. 90(2): p. 269-284.
29. Xiong, J. Y., Narayanan, J., Liu, X. Y., Chong, T. K., Chen, S. B., & Chung, T. S., Topology evolution and gelation mechanism of agarose gel. The Journal of Physical Chemistry B, 2005. 109(12): p. 5638-5643.
30. Yang, H., Iwata, H., Shimizu, H., Takagi, T., Tsuji, T., & Ito, F., Comparative studies of in vitro and in vivo function of three different shaped bioartificial pancreases made of agarose hydrogel. Biomaterials, 1994. 15(2): p. 113-120.
31. Cadic, C., Dupuy, B., Pianet, I., Merle, M., Margerin, C., & Bezian, J. H., In vitro culture of hybridoma cells in agarose beads producing antibody secretion for two weeks. Biotechnology and Bioengineering, 1992. 39(1): p. 108-112.
32. Lima, E. G., Bian, L., Ng, K. W., Mauck, R. L., Byers, B. A., Tuan, R. S., Ateshian, G. A., Hung, C. T., The beneficial effect of delayed compressive loading on tissue-engineered cartilage constructs cultured with TGF-β3. Osteoarthritis and Cartilage, 2007. 15(9): p. 1025-1033.
33. Wang, N., & Wu, X. S., Preparation and characterization of agarose hydrogel nanoparticles for protein and peptide drug delivery. Pharmaceutical Development and Technology, 1997. 2(2): p. 135-142.
34. Wang, J., Wang, Z., Gao, J., Wang, L., Yang, Z., Kong, D., & Yang, Z., Incorporation of supramolecular hydrogels into agarose hydrogels—a potential drug delivery carrier. Journal of Materials Chemistry, 2009. 19(42): p. 7892-7896.
35. Kolanthai, E., Ganesan, K., Epple, M., & Kalkura, S. N., Synthesis of nanosized hydroxyapatite/agarose powders for bone filler and drug delivery application. Materials Today Communications, 2016. 8: p. 31-40.
36. Hu, Z., Li, S., & Yang, L., Preparation of berbamine loaded chitosan-agarose microspheres and in vitro release study. Polímeros, 2012. 22(5): p. 422-426.
37. Sponchioni, M., Palmiero, U. C., & Moscatelli, D., Thermo-responsive polymers: Applications of smart materials in drug delivery and tissue engineering. Materials Science and Engineering: C, 2019. 102: p. 589-605.
38. Roy, D., Brooks, W. L., & Sumerlin, B. S., New directions in thermoresponsive polymers. Chemical Society Reviews, 2013. 42(17): p. 7214-7243.
39. Schild, H. G., Poly (N-isopropylacrylamide): experiment, theory and application. Progress in Polymer Science, 1992. 17(2): p. 163-249.
40. Seuring, J., & Agarwal, S., Polymers with upper critical solution temperature in aqueous solution. Macromolecular Rapid Communications, 2012. 33(22): p. 1898-1920.
41. Seuring, J., Bayer, F. M., Huber, K., & Agarwal, S., Upper critical solution temperature of poly (N-acryloyl glycinamide) in water: a concealed property. Macromolecules, 2012. 45(1): p. 374-384.
42. Wu, C., & Wang, X., Globule-to-coil transition of a single homopolymer chain in solution. Physical Review Letters, 1998. 80(18): p. 4092.
43. Kocak, G., Tuncer, C., & Bütün, V. J. P. C., pH-Responsive polymers. Polymer Chemistry, 2017. 8(1): p. 144-176.
44. Felber, A. E., Dufresne, M. H., & Leroux, J. C., pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates. Advanced Drug Delivery Reviews, 2012. 64(11): p. 979-992.
45. Monge, S., & David, G., Phosphorus-based polymers: from synthesis to applications. Vol. 11. 2014: Royal Society of Chemistry.
46. Gabaston, L. I., Furlong, S. A., Jackson, R. A., & Armes, S. P., Direct synthesis of novel acidic and zwitterionic block copolymers via TEMPO-mediated living free-radical polymerization. Polymer, 1999. 40(16): p. 4505-4514.
47. Guan, Y., & Zhang, Y., Boronic acid-containing hydrogels: synthesis and their applications. Chemical Society Reviews, 2013. 42(20): p. 8106-8121.
48. Sahiner, N., & Ozay, O., Highly charged p (4-vinylpyridine-co-vinylimidazole) particles for versatile applications: Biomedical, catalysis and environmental. Reactive and Functional Polymers, 2011. 71(6): p. 607-615.
49. González, N., Elvira, C., & Román, J. S., Novel dual-stimuli-responsive polymers derived from ethylpyrrolidine. Macromolecules, 2005. 38(22): p. 9298-9303.
50. Schmaljohann, D., Thermo-and pH-responsive polymers in drug delivery. Advanced Drug Delivery Reviews, 2006. 58(15): p. 1655-1670.
51. Sau, T. K., Rogach, A. L., Jäckel, F., Klar, T. A., & Feldmann, J., Properties and applications of colloidal nonspherical noble metal nanoparticles. Advanced Materials, 2010. 22(16): p. 1805-1825.
52. Murphy, C. J., Gole, A. M., Stone, J. W., Sisco, P. N., Alkilany, A. M., Goldsmith, E. C., & Baxter, S. C., Gold nanoparticles in biology: beyond toxicity to cellular imaging. Accounts of Chemical Research, 2008. 41(12): p. 1721-1730.
53. Templeton, A. C., Pietron, J. J., Murray, R. W., & Mulvaney, P., Solvent refractive index and core charge influences on the surface plasmon absorbance of alkanethiolate monolayer-protected gold clusters. The Journal of Physical Chemistry B, 2000. 104(3): p. 564-570.
54. Yeh, Y. C., Creran, B., & Rotello, V. M., Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale, 2012. 4(6): p. 1871-1880.
55. Jain, P. K., Lee, K. S., El-Sayed, I. H., & El-Sayed, M. A., Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. The Journal of Physical Chemistry B, 2006. 110(14): p. 7238-7248.
56. Kelly, K. L., Coronado, E., Zhao, L. L., & Schatz, G. C., The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B 2003 107 (3), 668-677
57. Su, K. H., Wei, Q. H., Zhang, X., Mock, J. J., Smith, D. R., & Schultz, S., Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Letters, 2003. 3(8): p. 1087-1090.
58. Yang, X., Yang, M., Pang, B., Vara, M., & Xia, Y., Gold nanomaterials at work in biomedicine. Chemical Reviews, 2015. 115(19): p. 10410-10488.
59. Turkevich, J., Stevenson, P. C., & Hillier, J., A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, 1951. 11: p. 55-75.
60. Frens, G., Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature Physical Science, 1973. 241(105): p. 20-22.
61. Aslan, K., & Pérez-Luna, V. H., Surface modification of colloidal gold by chemisorption of alkanethiols in the presence of a nonionic surfactant. Langmuir, 2002. 18(16): p. 6059-6065.
62. Brust, M., Walker, M., Bethell, D., Schiffrin, D. J., & Whyman, R., Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. Journal of the Chemical Society, Chemical Communications, 1994(7): p. 801-802.
63. Hostetler, M. J., Wingate, J. E., Zhong, C. J., Harris, J. E., Vachet, R. W., Clark, M. R., Londono, J. D., Green, S. J., Stokes, J. J., Wignall, G, D., Glish, G. L., Porter, M. D., Evans, N. D., Murray, R W., Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir, 1998. 14(1): p. 17-30.
64. Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G., & Whitesides, G. M., Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical reviews, 2005. 105(4): p. 1103-1170.
65. Burrows, N.D., Lin, W., Hinman, J. G., Dennison, J. M., Vartanian, A. M., Abadeer, N. S., Grzincic, E. M., Jacob, L. M., Li. J., Murphy, C. J., Surface chemistry of gold nanorods. Langmuir, 2016. 32(39): p. 9905-9921.
66. Link, S., Mohamed, M. B., & El-Sayed, M. A., Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. The Journal of Physical Chemistry B, 1999. 103(16): p. 3073-3077.
67. Burda, C., Chen, X., Narayanan, R., & El-Sayed, M. A., Chemistry and properties of nanocrystals of different shapes. Chemical reviews, 2005. 105(4): p. 1025-1102.
68. Murphy, C. J., Gole, A. M., Hunyadi, S. E., & Orendorff, C. J., One-dimensional colloidal gold and silver nanostructures. Inorganic Chemistry, 2006. 45(19): p. 7544-7554.
69. Sau, T. K., & Murphy, C. J., Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir, 2004. 20(15): p. 6414-6420.
70. Nikoobakht, B., & El-Sayed, M. A., Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chemistry of Materials, 2003. 15(10): p. 1957-1962.
71. Von Maltzahn, G., Park, J. H., Agrawal, A., Bandaru, N. K., Das, S. K., Sailor, M. J., & Bhatia, S. N., Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Research, 2009. 69(9): p. 3892-3900.
72. Shanmugam, V., Selvakumar, S., & Yeh, C. S., Near-infrared light-responsive nanomaterials in cancer therapeutics. Chemical Society Reviews, 2014. 43(17): p. 6254-6287.
73. Alkilany, A. M., Thompson, L. B., Boulos, S. P., Sisco, P. N., & Murphy, C. J., Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Advanced Drug Delivery Reviews, 2012. 64(2): p. 190-199.
74. Song, C.W., Effect of local hyperthermia on blood flow and microenvironment: a review. Cancer Research, 1984. 44(10): p. 4721s-4730s.
75. Qian, X., Peng, X, H., Ansari, D. O., Yin-Goen, Q., Chen, G. Z., Shin, D. M., Yang, L., Young, A. D., Wang, M. D., Nie, S., In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nature Biotechnology, 2008. 26(1): p. 83-90.
76. Durr, N. J., Larson, T., Smith, D. K., Korgel, B. A., Sokolov, K., & Ben-Yakar, A., Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Letters, 2007. 7(4): p. 941-945.
77. Mayer, K. M., Lee, S., Liao, H., Rostro, B. C., Fuentes, A., Scully, P. T., Nehl, C. L. & Hafner, J. H., A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods. ACS Nano, 2008. 2(4): p. 687-692.
78. Min, Y., Mao, C., Xu, D., Wang, J., & Liu, Y., Gold nanorods for platinum based prodrug delivery. Chemical Communications, 2010. 46(44): p. 8424-8426.
79. Li, A., Zhang, P., Chang, X., Cai, W., Wang, T., & Gong, J., Gold Nanorod@ TiO2 Yolk‐Shell Nanostructures for Visible‐Light‐Driven Photocatalytic Oxidation of Benzyl Alcohol. Small, 2015. 11(16): p. 1892-1899.
80. Han, X., Liu, Y., & Yin, Y., Colorimetric stress memory sensor based on disassembly of gold nanoparticle chains. Nano Letters, 2014. 14(5): p. 2466-2470.
81. Lundén, H., Liotta, A., Chateau, D., Lerouge, F., Chaput, F., Parola, S., Brännlund, C., Ghadyani, Z., Kildemo, M., Lindgren, M., & Lopes, C., Dispersion and self-orientation of gold nanoparticles in sol–gel hybrid silica–optical transmission properties. Journal of Materials Chemistry C, 2015. 3(5): p. 1026-1034.
82. Wu, X., Liu, L., Deng, Z., Nian, L., Zhang, W., Hu, D., Xie, Z., Mo, Y., & Ma, Y., Efficiency improvement in polymer light‐emitting diodes by “far‐field” effect of gold nanoparticles. Particle & Particle Systems Characterization, 2015. 32(6): p. 686-692.
83. Mubeen, S., Lee, J., Lee, W. R., Singh, N., Stucky, G. D., & Moskovits, M., On the plasmonic photovoltaic. ACS Nano, 2014. 8(6): p. 6066-6073.
84. Thongprajukaew, K., Choodum, A., Sa-E, B., & Hayee, U., Smart phone: a popular device supports amylase activity assay in fisheries research. Food Chemistry, 2014. 163: p. 87-91.
85. Hermanson, G.T., Bioconjugate techniques. 2013: Academic press.
86. Weber, C. J., A modification of Sakaguchi's reaction for the quantitative determination of arginine. Journal of Biological Chemistry, 1930. 86(1): p. 217-222.
87. Niidome, T., Nakashima, K., Takahashi, H., & Niidome, Y., Preparation of primary amine-modified gold nanoparticles and their transfection ability into cultivated cells. Chemical Communications, 2004(17): p. 1978-1979.
88. Sanson, C., Schatz, C., Le Meins, J. F., Soum, A., Thévenot, J., Garanger, E., & Lecommandoux, S., A simple method to achieve high doxorubicin loading in biodegradable polymersomes. Journal of Controlled Release, 2010. 147(3): p. 428-435.
89. Kataoka, K., Matsumoto, T., Yokoyama, M., Okano, T., Sakurai, Y., Fukushima, S., Okamoto, K., & Kwon, G. S., Doxorubicin-loaded poly (ethylene glycol)–poly (β-benzyl-l-aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance. Journal of Controlled Release, 2000. 64(1-3): p. 143-153.
90. Tseng, W. C., Fang, T. Y., Lin, Y. C., Huang, S. J., & Huang, Y. H., Reversible self-assembly nanovesicle of UCST response prepared with multi-l-arginyl-poly-l-aspartate conjugated with polyethylene glycol. Biomacromolecules, 2018. 19(12): p. 4585-4592.
91. Blackman, L. D., Gunatillake, P. A., Cass, P., & Locock, K. E., An introduction to zwitterionic polymer behavior and applications in solution and at surfaces. Chemical Society Reviews, 2019. 48(3): p. 757-770.
92. Mellman, I., Endocytosis and molecular sorting. Annual Review of Cell and Developmental Biology, 1996. 12(1): p. 575-625.
93. Mukherjee, S., Ghosh, R. N., & Maxfield, F. R., Endocytosis. Physiological Reviews, 1997. 77(3): p. 759-803.

無法下載圖示 全文公開日期 2025/08/17 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE