簡易檢索 / 詳目顯示

研究生: 許瀚文
Han-Wen Hsu
論文名稱: 以熱像儀觀察具有圖形化藍寶石基板之LED表面溫度分佈
Observation of Surface Temperature distribution of Light- Emitting Diodes Grown on Patterned Sapphire Substrate by Infrared Camera
指導教授: 蘇忠傑
Jung-Chieh, Su
口試委員: 林保宏
Pao-hung, Lin
李志堅
Chih-Chien, Lee
楊恆隆
Heng-Ling, Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 129
中文關鍵詞: 熱像儀放射率圖形化藍寶石基板發光二極體
外文關鍵詞: Infrared Camera, Emissivity, Patterned Sapphire, Light Emitting Diodes
相關次數: 點閱:284下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

發光二極體(Light-Emitting Diode, LED)由於磊晶缺陷、電極佈置等原因,造成發光層局部區域電流密度較高,此現象稱為電流集聚效應(Cureent Crowding Effect)。然而電流密度較高不只造成發光強度增加,也代表溫度升高並形成區域加熱現象(Local Heating)。此外,當溫度提高時電子與電洞在發光層的非輻射結合的機率提高,且全反射效應(Total Internal Reflection)也讓反射回來的能量會被LED各層材料吸收,而這又使得溫度提高。在上述效應交互作用之下,LED產生自體加熱效應(Self Heating)並減少自身壽命甚至損壞封裝材料。因此LED溫度量測顯得更重要。
由於LED的晶粒尺寸很小,難以使用接觸式的溫度量測方式,所以本論文利用非接觸式的溫度量測方式(熱像儀, Infrared Camera)。然而在量測溫度前,需先知道LED每個材料的放射率(Emissivity),量測的溫度才正確。所以將黑色電汽絕緣膠帶當作黑體校正源,並分別量測LED表面材料之放射率。得到各表面材料放射率後,套用在已封裝完成之LED上,並取得各材料的表面溫度,最後再與順向偏壓法所推測出的接面溫度做比對。


This current crowding effect of light-emitting diode (LED) resulted from the defects in the epilayers or arrangement of electrodes, and caused higher current density in partial region of light emitting layer. Since higher current density not only means higher light output, but also cause temperature rising and cause localized heating. Besides, the increasing non-radiative combination rate of of electrons and holes in emission layer of LED, and the total internal reflection effect also enhanced the temperature rise. Due to the abovementioned effects, the resulting self-heating effect reduces lifetime of LED and even do damage to epilayer materials. Therefore, LED chip temperature measurement becomes more important.
Because of the size of LED chips is very small, is difficult to measure temperature by using contact thermometer. In this thesis, the non-contact thermometer (infrared camera) was used to measure LED chip surface temperature. However, the knowledge of emissivity for each epilayer materials is required to test the real temperature of LED surface epilayer. A black electrical insulation tape was used as a reference black body and referred to measure emissivity of each LED epilayer materials. After emissivity calibrating, the surface temperature of LED chip was tested by applying the emissivity of epilayers. Then, the temperature measured by infarred camera was compared with the temperature calculated by forward voltage method.

第一章 導論 1.1 前言 1.2 文獻回顧 1.2.1 溫度量測方式 1.2.1.1 接觸式 1.2.1.2 紅外量測式 1.2.2 輻射熱傳導之基本概念 1.2.2.1 輻射強度(Radiation Intensity) 1.2.2.2 放射功率(Emissive Power) 1.2.3 黑體輻射定律 1.2.3.1 普朗克定律(Planck's Law) 1.2.3.2 維恩位移定律(Wien's Displacement Law) 1.2.3.3 史蒂芬波茲曼定律(Stefan-Boltzmann's Law) 1.2.3.4 克西何夫定律(Kirchhoff's Law) 1.2.3.5 真實表面之輻射特性 1.2.4 發光二極體之致熱效應 1.2.4.1 電流集聚效應(Current Crodwing Effect) 1.2.4.2 全反射效應(Total Internal Reflection Effect) 1.2.5 順向偏壓法(Forward Voltage Method) 第二章 研究目的與量測方法 2.1 研究目的 2.2 量測方法 2.2.1 儀器介紹 (1) 熱電偶(Thermal Couple) (2) 熱電致冷晶片(Thermoelectric Cooler,TEC) (3) 加熱板(Hot Plate) (4) 電源供應器(Power Supply) (5) 多功能數據擷取器(Multifunction Data Acquistion, DAQ) (6) 熱像儀(Infrared Camera) 2.2.2 實驗材料與規格 (1) 絕緣膠帶(Electrical Insulation Tape) (2) 導熱耐熱雙面膠 (3) 隔熱板(Thermal Insulation Board) (4) 圖形化藍寶石基板(Patterned Sapphire Substrate, PSS) (5) 銦錫氧化物(Indium Tin Oxide on Glass,) (6) 發光二極體與封裝結構(LED Chip and Packaged Structure) 2.2.3 實驗流程 2.2.4 實驗架構與量測 2.2.4.1 放射率量測 2.2.4.2 順向偏壓法 第三章 實驗結果與討論 3.1鏡頭被置具加熱之影響 3.2 放射率量測結果 3.2.1 玻璃上之ITO 薄膜放射率量測 3.2.2 圖形化藍寶石基板(Patterned Sapphire Substrate, PSS)放射率量測 3.2.3 LED 晶粒表面材料之放射量測 3.3 順向偏壓法 3.3.1 Keithley 2401 (1) 校正曲線 (2) Tj vs Vf方程式 (3) Tj vs If方程式 3.3.2 多功能擷取器(DAQ) (1) 校正曲線 (2) Tj vs Vf方程式 (3) Tj vs If方程式 3.3.3 Keithley 2401與多功能擷取器比較 3.3.4 封裝後LED晶粒表面溫度分佈 第四章 結論與未來展望 4.1結論 4.2未來展望 參考資料 附錄A實驗儀器與材料規格 附錄B 美國材料和試驗協會ASTM E1933-99a 附錄C Gemesis Photonic藍光LED晶粒規格

[1]"陳瑞和, 感測器, 全華出版社 pp.241~255, 2009."
[2]"陳福春, 感測器, 全華科技圖書股份有限公司 pp.83~94, 2006."
[3]"王大倫, 工業上溫度量測法, 徐氏基金會出版部 pp.83~94, 1985."
[4]"RTD STANDARDS, http://www.gilsoneng.com/reference/rtdinfo.pdf."
[5]"吳朗, 溫度感測器, 全華科技圖書股份有限公司 pp.46~135, 1990."
[6]J. S. Steinhart and S. R. Hart, "Calibration curves for thermistors," in Deep Sea Research and Oceanographic Abstracts, 1968, pp. 497-503.
[7]S. B. Lang, "Pyroelectricity: from ancient curiosity to modern imaging tool," Physics today, vol. 58, p. 31, 2005.
[8]R. J. Keyes, Optical and infrared detectors vol. 19: Springer Science & Business Media, 2013.
[9]Y. Yang, J. H. Jung, B. K. Yun, F. Zhang, K. C. Pradel, W. Guo, et al., "Flexible Pyroelectric Nanogenerators using a Composite Structure of Lead‐Free KNbO3 Nanowires," Advanced Materials, vol. 24, pp. 5357-5362, 2012.
[10]M.-Y. Kim and T.-S. Oh, "Thermoelectric characteristics of the thermopile sensors with variations of the width and the thickness of the electrodeposited bismuth-telluride and antimony-telluride thin films," Materials transactions, vol. 51, pp. 1909-1913, 2010.
[11]J. Schilz, "Thermoelectric infrared sensors (thermopiles) for remote temperature measurements," Perkin Elmer Optoelectronics GmbH, Wiesbaden, Germany, 2000.
[12]A. Roer, A. Lapadatu, E. Wolla, and G. Kittilsland, "High-performance LWIR microbolometer with Si/SiGe quantum well thermistor and wafer level packaging," in SPIE Defense, Security, and Sensing, 2013, pp. 87041B-87041B-9.
[13]J. Hecht, "Photonic Frontiers: Room-Temperature IR Imaging-Microbolometer arrays enable uncooled infrared cameras," Laser Focus World, vol. 48, p. 70, 2012.
[14]G. J. Zissis and W. L. Wolfe, "The infrared handbook," DTIC Document1978.
[15]K. S. Chang, S. C. Yang, J.-Y. Kim, M. H. Kook, S. Y. Ryu, H. Y. Choi, et al., "Precise temperature mapping of GaN-based LEDs by quantitative infrared micro-thermography," Sensors, vol. 12, pp. 4648-4660, 2012.
[16]R. P. Madding, "Emissivity measurement and temperature correction accuracy considerations," in AeroSense'99, 1999, pp. 393-401.
[17]"Cooled or Uncooled? http://www.flir.com/science/display/?id=65982."
[18]"謝曉星, 基本熱傳學, 東華書局 pp.258~303, 1990 ".
[19]T. L. Bergman, F. P. Incropera, D. P. DeWitt, and A. S. Lavine, Fundamentals of heat and mass transfer: John Wiley & Sons, 2011.
[20]"王添益, 熱傳遞學, 藝文圖書公司 pp.371~488, 1985."
[21]"張仲卿, 熱傳遞, 高立圖書有限公司 pp,613~665, 2003."
[22]I. Almog and V. MS-Bulovic, "The Lorentz oscillator and its applications," Massachusetts Institute of Technology, 2011.
[23]C. A. Bennett, Principles of physical optics: Wiley, 2008.
[24]B. J. Frey, D. B. Leviton, and T. J. Madison, "Temperature-dependent refractive index of silicon and germanium," in SPIE Astronomical Telescopes+ Instrumentation, 2006, pp. 62732J-62732J-10.
[25]H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, "Temperature-dependent optical properties of gold thin films," arXiv preprint arXiv:1604.00064, 2016.
[26]S. M. Kim, Y. B. Moon, I. K. Park, and J. S. Jang, "Degradation mechanism of light‐emitting diodes on patterned sapphire substrate," physica status solidi (a), vol. 207, pp. 1414-1417, 2010.
[27]E. F. Schubert, T. Gessmann, and J. K. Kim, Light emitting diodes: Wiley Online Library, 2005.
[28]E. Jung and H. Kim, "Rapid optical degradation of GaN-based light-emitting diodes by a current-crowding-induced self-accelerating thermal process," IEEE Transactions on Electron Devices, vol. 61, pp. 825-830, 2014.
[29]Y.-K. Kuo, J.-Y. Chang, and M.-C. Tsai, "Enhancement in hole-injection efficiency of blue InGaN light-emitting diodes from reduced polarization by some specific designs for the electron blocking layer," Optics letters, vol. 35, pp. 3285-3287, 2010.
[30]Y.-J. Liu, C.-C. Huang, T.-Y. Chen, C.-S. Hsu, J.-K. Liou, and W.-C. Liu, "Improved performance of an InGaN-based light-emitting diode with a p-GaN/n-GaN barrier junction," IEEE Journal of Quantum Electronics, vol. 47, pp. 755-761, 2011.
[31]X. Guo and E. Schubert, "Current crowding in GaN/InGaN light emitting diodes on insulating substrates," Journal of applied Physics, vol. 90, pp. 4191-4195, 2001.
[32]H. Kim, S.-N. Lee, and J. Cho, "Electrical and optical characterization of GaN-based light-emitting diodes fabricated with top-emission and flip-chip structures," Materials Science in Semiconductor Processing, vol. 13, pp. 180-184, 9// 2010.
[33]Y.-C. Lee, F.-S. Hwu, M.-C. Yang, and C.-Y. Lin, "Experimental and numerical analysis of p-electrode patterns on the lateral GaN-based LEDs," Journal of Lightwave Technology, vol. 32, pp. 2643-2648, 2014.
[34]H. Kim, S.-J. Park, H. Hwang, and N.-M. Park, "Lateral current transport path, a model for GaN-based light-emitting diodes: Applications to practical device designs," Applied physics letters, vol. 81, pp. 1326-1328, 2002.
[35]S. Huang, H. Wu, B. Fan, B. Zhang, and G. Wang, "A chip-level electrothermal-coupled design model for high-power light-emitting diodes," Journal of Applied Physics, vol. 107, p. 054509, 2010.
[36]I. Schnitzer, E. Yablonovitch, C. Caneau, T. Gmitter, and A. Scherer, "30% external quantum efficiency from surface textured, thin‐film light‐emitting diodes," Applied Physics Letters, vol. 63, pp. 2174-2176, 1993.
[37]Z. Yin, X. Liu, Y. Wu, X. Hao, and X. Xu, "Enhancement of light extraction in GaN-based light-emitting diodes using rough beveled ZnO nanocone arrays," Optics express, vol. 20, pp. 1013-1021, 2012.
[38]B. Sun, L. Zhao, T. Wei, X. Yi, Z. Liu, G. Wang, et al., "Shape designing for light extraction enhancement bulk-GaN light-emitting diodes," Journal of Applied Physics, vol. 113, p. 243104, 2013.
[39]張靜宜, "側向磊晶技術成長氮化鎵之研究," 成功大學材料科學及工程學系學位論文, pp. 1-169, 2005.
[40]Y. Xi and E. Schubert, "Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method," Applied Physics Letters, vol. 85, pp. 2163-2165, 2004.
[41]M. Vellvehi, X. Perpiñà, G. Lauro, F. Perillo, and X. Jordà, "Irradiance-based emissivity correction in infrared thermography for electronic applications," review of scientific instruments, vol. 82, p. 114901, 2011.
[42]J. S. JESD51, "1" Integrated Circuit Thermal Measurement Method-Electrical Test Method (Single Semiconductor Device)," ed, 1995.
[43]S. V. Muley and N. M. Ravindra, "Emissivity of Electronic Materials, Coatings, and Structures," JOM, vol. 66, pp. 616-636, 2014.
[44]A. Chatterjee, J. Senawiratne, Y. Li, T. Detchprohm, M. Zhu, Y. Xia, et al., "Junction Temperature Simulation of Gallium Nitride Green Light Emitting Diodes Using COMSOL," in Excerpt from the Proceedings of the COMSOL Conference, 2007.
[45]P. K. Biswas, A. De, N. Pramanik, P. Chakraborty, K. Ortner, V. Hock, et al., "Effects of tin on IR reflectivity, thermal emissivity, Hall mobility and plasma wavelength of sol–gel indium tin oxide films on glass," Materials letters, vol. 57, pp. 2326-2332, 2003.

無法下載圖示 全文公開日期 2021/08/30 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE