簡易檢索 / 詳目顯示

研究生: 李承洋
Cheng-Yang - Lee
論文名稱: 用於LTE上行鏈結以改善封包遺失與公平性之植基於急迫性的公平排程演算法
An Urgency-Based Fair Scheduling Algorithm for LTE Uplink to Improve Packet Loss and Fairness
指導教授: 馮輝文
Huei-wen Ferng
口試委員: 黎碧煌
Bih-hwang Lee
謝宏昀
Hung-yun Hsieh
林嘉慶
Jia-chin Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 77
中文關鍵詞: 封包延遲上行排程演算法長期演進延遲預算封包遺失率
外文關鍵詞: Packet Loss Ratio, Delay Budget, Packet Delay, Uplink Scheduling, LTE
相關次數: 點閱:270下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

由於目前長期演進上行傳輸使用的經典排程演算法並未顧及使用者裝置的延遲狀況且其公平性不佳,導致部分使用者裝置得不到資源以傳輸資料且封包嚴重遺失,再者,資源分配方式的效率亦不佳,因此,本碩士論文著眼於設計一排程演算法來消弭封包大量遺失的狀況並提升使用者裝置的公平性。為能改善封包遺失率,我們的排程演算法不以使用者裝置通道品質為基礎,而是加入延遲預算做考量,選擇使用者裝置中平均佇列頭端封包剩餘延遲預算最少的使用者裝置為優先對象,使其能優先獲得較佳的資源以進行資料傳輸,降低使用者裝置的封包遺失率。除此之外,透過參考使用者裝置平均配置過的資源數量,讓取得過較少資源的使用者裝置也能有機會取得資源,進而提升整體的公平性,另外,我們的排程演算法在連續分配上設置分配數量限制,能更有效地利用資源,進一步提升系統的吞吐量。最後,在固定服務流數量與隨機服務流數量安排下,模擬數據印證本碩士論文提出之排程演算法均能達到預期的效果,與其他相關的排程演算法相比,除了能有效降低封包的遺失率,更可提升整體使用者裝置彼此間的公平性及系統的吞吐量。


Nowadays, classic scheduling algorithms used in LTE uplink fail to take care of delay conditions and fairness among user equipments(UEs), resulting in severe packet losses and poor fairness for some UEs. Meanwhile, the corresponding resource allocation is not efficient as well. Therefore, we aim at designing a scheduling algorithm to avoid packet losses and enhance fairness. Targeting towards the aforementioned goals, the delay budget rather than the channel condition of UEs serves as the key factor when designing our algorithm. Our algorithm employs the principle that the UE with the least delay budget left in queue will be scheduled preferentially first. By doing so, it is allowed to get good-quality resources to transmit data so that the problem of packet losses can be alleviated. Furthermore, the amount of allocated resources is taken into account. UEs with fewer allocated resources still have chances to be served to improve fairness. In addition, our proposed algorithm poses a constraint in sequential resource allocation so that resources can be utilized efficiently and the overall throughput can be improved. Finally, our simulation results support that our proposed algorithm performs well as expected either in a scenario with a fixed number of service flows or in a scenario with a random number of service flows. Compared with the other related algorithms, our proposed algorithm has fewer packet losses as well as better system throughput.

論文指導教授推薦書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 考試委員審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x 第一章、緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 長期演進基礎架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 技術簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 網路架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.3 正交分頻多重存取及單載波分頻多重存取. . . . . . . . . . . 3 1.2 長期演進排程與資源分配架構. . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 分層架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.2 訊框架構及資源區塊. . . . . . . . . . . . . . . . . . . . . . . 7 1.2.3 服務品質與通道品質. . . . . . . . . . . . . . . . . . . . . . . 10 1.2.4 調變編碼技術. . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2.5 排程演算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 第二章、相關文獻探討. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1 有效信號與干擾加雜訊比. . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 調變速率與傳輸區塊. . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 最佳通道品質指標排程演算法. . . . . . . . . . . . . . . . . . . . . . 17 2.4 循環制排程演算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5 比例性公平排程演算法. . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.6 第一最大延展與遞迴最大延展排程演算法. . . . . . . . . . . . . . . 20 2.7 機會性雙重權值排程演算法. . . . . . . . . . . . . . . . . . . . . . . 23 第三章、改善封包遺失率及保障使用者公平性之排程演算法. . . . . . . . . . 26 3.1 急迫度. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 平均配置資源度. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3 調變編碼技術限制. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.4 排程演算法流程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.4.1 使用者裝置優先順序階段. . . . . . . . . . . . . . . . . . . . 33 3.4.2 資源區塊連續分配階段. . . . . . . . . . . . . . . . . . . . . . 35 第四章、模擬結果數值討論與分析. . . . . . . . . . . . . . . . . . . . . . . . 40 4.1 模擬環境參數設定. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.2 加權公平性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.3 植基於急迫性之公平排程法分析. . . . . . . . . . . . . . . . . . . . . 44 4.3.1 優先權值指數選擇. . . . . . . . . . . . . . . . . . . . . . . . 45 4.3.2 調變編碼技術限制效果. . . . . . . . . . . . . . . . . . . . . . 52 4.4 各機制之端點對端點延遲. . . . . . . . . . . . . . . . . . . . . . . . . 60 4.5 各機制之封包遺失率. . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.6 各機制之公平性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.7 各機制之吞吐量. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 第五章、結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

[1] N. Abu-Ali, A.-E. M. Taha, M. Salah, and H. Hassanein, “Uplink scheduling in LTE and LTE-Advanced: Tutorial, survey and evaluation framework,” IEEE Communications Surveys & Tutorials, vol. 16, no. 3, pp. 1239–1265, Mar. 2014.
[2] M. M. Rana, M. S. Islam, and A. Z. Kouzani, “Peak to average power ratio analysis for LTE systems,” in Proc. International Conference on Communication Software and Networks (ICCSN), pp. 516–520, Feb. 2010.
[3] A. Damnjanovic, J. Montojo, Y. Wei, T. Ji, T. Luo, M. Vajapeyam, T. Yoo, O. Song, and D. Malladi, “A survey on 3GPP heterogeneous networks,” IEEE Wireless Communications, vol. 18, no. 3, pp. 10–21, Jun. 2011.
[4] 3GPP, Tech. Specif. Group Radio Access Network - Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Packet Data Convergence Protocol (PDCP) specification (Release 13), 3GPP TS 36.323. Jan. 2016.
[5] 3GPP, Tech. Specif. Group Radio Access Network - Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Radio Link Control (RLC) protocol specification (Release 13), 3GPP TS 36.322. Aug. 2016.
[6] 3GPP, Tech. Specif. Group Radio Access Network - Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Medium Access Control (MAC) protocol specification (Release 13), 3GPP TS 36.321. Aug. 2016.
[7] 3GPP, Tech. Specif. Group Radio Access Network - Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 11), 3GPP TS 36.300. Nov. 2012.
[8] 3GPP, Tech. Specif. Group Radio Access Network - Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network(E-UTRAN); Physical channels and modulation (Release 13), 3GPP TS 36.211. Jan. 2016.
[9] F. Capozzi, G. Piro, L. A. Grieco, G. Boggia, and P. Camarda, “Downlink packet scheduling in LTE cellular networks: Key design issues and a survey,” IEEE Communications Surveys & Tutorials, vol. 15, no. 2, pp. 678–700, Jun. 2013.
[10] 3GPP, Tech. Specif. Group Services and System Aspects - Policy and charging control architecture (Release 9), 3GPP TS 23.203. Mar. 2011.
[11] 3GPP, Tech. Specif. Group Radio Access Network - Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Physical layer procedure (Release 13), 3GPP TS 36.213. May 2016.
[12] A. Mukhopadhyay, G. Das, and V. S. K. Reddy, “A fair uplink scheduling algorithm to achieve higher MAC layer throughput in LTE,” in Proc. IEEE International Conference on Communications (ICC), pp. 3119–3124, Jun. 2015.
[13] H. Safa, W. El-Hajj, and K. Tohme, “A QoS-aware uplink scheduling paradigm for LTE networks,” in Proc. IEEE International Conference on Advanced Information Networking and Applications (AINA), pp. 1097–1104, Mar. 2013.
[14] J. Francis and N. B. Mehta, “EESM-based link adaptation in point-to-point and multicell OFDM systems: Modeling and analysis,” IEEE Transactions on Wireless Communications, vol. 13, no. 1, pp. 407–417, Jan. 2014.
[15] M. B. Hcine and R. Bouallegue, “Analysis of uplink effective SINR in LTE networks,” in Proc. International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 425–430, Aug. 2015.
[16] R. R. Su and I. S. Hwang, “Efficient resource allocation scheme with grey relational analysis for the uplink scheduling of 3GPP LTE networks,” in Proc. IEEE International Conference on Industrial Technology (ICIT), pp. 599–603, Mar. 2016.
[17] K. Arshad, “LTE system level performance in the presence of CQI feedback uplink delay and mobility,” in Proc. International Conference on Communications, Signal Processing, and their Applications (ICCSPA), pp. 1–5, Feb. 2015.
[18] H. J. Kushner and P. A. Whiting, “Asymptotic properties of proportional-fair sharing algorithms,” tech. rep., DTIC Document, May 2002.
[19] L. Á. M. Ruiz De Temiňo, G. Berardinelli, S. Frattasi, and P. Mogensen, “Channel-aware scheduling algorithms for SC-FDMA in LTE uplink,” in Proc. IEEE International
Symposium on Personal Indoor and Mobile Radio Communications (PIMRC),
pp. 1–6, Sep. 2008.
[20] H. Safa and K. Tohme, “LTE uplink scheduling algorithms: Performance and challenges,” in Proc. International Conference on Telecommunications (ICT), pp. 1–6, Apr. 2012.
[21] A. Kanagasabai and A. Nayak, “Opportunistic dual metric scheduling algorithm for LTE uplink,” in Proc. IEEE International Conference on Communication Workshop (ICCW), pp. 1446–1451, Jun. 2015.
[22] C. Wang, Y. P. Chung, K. C. Ting, C. C. Tseng, H. C. Wang, and F. C. Kuo, “Hybrid maximum-rate and proportional-fairness resource allocation in the downlink of LTE networks,” in Proc. IEEE International Conference on Consumer Electronics - Taiwan (ICCE-TW), pp. 23–24, May 2014.
[23] 3GPP, Tech. Specif. Group Radio Access Network - Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); User Equipment (UE) radio transmission and reception (Release 12), 3GPP TS 36.101. Oct. 2015.
[24] K. V. Pradap, V. Ramachandran, and S. Kalyanasundaram, “Uplink buffer status reporting for delay constrained flows in 3GPP long term evolution,” in Proc. IEEE Wireless Communications and Networking Conference, pp. 1–6, Apr. 2009.
[25] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, P. Whiting, and R. Vijayakumar, “Providing quality of service over a shared wireless link,” IEEE Communications Magazine, vol. 39, no. 2, pp. 150–154, Feb. 2001.
[26] S. B. Lee, I. Pefkianakis, A. Meyerson, S. Xu, and S. Lu, “Proportional fair frequency-domain packet scheduling for 3GPP LTE uplink,” in Proc. IEEE Inter-national Conference on Computer Communications (INFOCOM), pp. 2611–2615, Apr. 2009.
[27] J. Kim, D. Kim, and Y. Han, “Proportional fair scheduling algorithm for SC-FDMA in LTE uplink,” in Proc. IEEE Global Communications Conference (GLOBECOM), pp. 4816–4820, Dec. 2012.
[28] A. Kessab, F. Z. Kaddour, E. Vivier, L. Mroueh, M. Pischella, and P. Martins, “Gain of multi-resource block allocation and tuning in the uplink of LTE networks,” in Proc. International Symposium on Wireless Communication Systems (ISWCS), pp. 321–325, Aug. 2012.
[29] G. Piro, L. A. Grieco, G. Boggia, F. Capozzi, and P. Camarda, “Simulating LTE cellular systems: An open-source framework,” IEEE Transactions on Vehicular Technology, vol. 60, no. 2, pp. 498–513, Nov. 2011.
[30] R. E. Ahmed and H. M. AlMuhallabi, “Throughput-fairness tradeoff in LTE uplink scheduling algorithms,” in Proc. International Conference on Industrial Informatics and Computer Systems (CIICS), pp. 1–4, Mar. 2016.
[31] R. Jain, D.-M. Chiu, and W. R. Hawe, A quantitative measure of fairness and discrimination for resource allocation in shared computer system, vol. 38. Sep. 1984.
[32] H. W. Ferng and H. Y. Liau, “Design of fair scheduling schemes for the QoS-oriented wireless LAN,” IEEE Transactions on Mobile Computing, vol. 8, no. 7, pp. 880–894, Nov. 2009.

QR CODE