簡易檢索 / 詳目顯示

研究生: 趙清松
Ching-Sung Chao
論文名稱: LTE-A 網路環境下依據通道狀況與服務需求的動態中繼器功率分配設計
Design of Dynamic Relay Power Allocation Considering CQI and Service Request in LTE-A Networks
指導教授: 馮輝文
Huei-Wen Ferng
口試委員: 林嘉慶
Jia-Chin Lin
葉生正
Sheng-Cheng Yeh
鍾國亮
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 41
中文關鍵詞: 長期演進技術升級版中繼站傳輸功率資源區塊功率節省
外文關鍵詞: LTE-A, Relay, Transmit Power, Resource Block, Power Saving
相關次數: 點閱:253下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 長期演進技術升級版(Long Term Evolution Advanced, LTE-A),是基於長期演進技術(LTE) 的升級版,額外增加了許多新的技術,其中一項技術為中繼站(Relay)。中繼站能有效的改善位於服務範圍邊緣使用者的服務品質,還能延伸服務範圍。然而,中繼站的加入也造成一些影響,例如中繼站傳輸功率會對其他不同基地台中的中繼站造成影響。本篇論文提出新的動態中繼器功率分配(Dynamic Relay Power Allocation, DRPA) 機制來解決該問題。DRPA 會依據各個資源區塊(Resource Block, RB) 所使用的通道品質指標以及該中繼站所配置到的資源區塊數,來做調整中繼站的傳輸功率,降低對其他節點的影響,改善通道品質、提升通道容量、維持吞吐量,藉以達到節能的目的。


    The Long Term Evolution Advanced (LTE-A) is an enhanced standard based on the Long Term Evolution (LTE) by adding some new technologies, e.g., relay stations etc. A relay station can not only effectively improve the service quality of the user equipments (UEs) located near the edge of service coverage but also extend the service coverage. However, some side effects of relay stations have been raised, for example, the impact caused by the transmit power of relay stations to the other relay stations. To properly address such an issue, a dynamic relay power allocation (DRPA) mechanism is proposed in this thesis. According to the Channel Quality Indicator (CQI) and the number of Resource Blocks (RBs) allocated to the relay station, DRPA will adjust the relay transmit power to alleviate the interference from the other nodes to improve the channel quality, enhance the channel capacity, and maintain the throughput while achieving the purpose of power saving.

    目錄 中文摘要 iii 英文摘要 iv 目錄 v 表目錄 viii 圖目錄 ix 第一章、緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文架構 3 第二章、相關背景與研究 5 2.1 LTE 介紹 5 2.1.1 LTE 傳輸系統 5 2.1.2 LTE 系統架構 6 2.1.3 LTE 協定層架構 8 2.1.4 LTE 資源介紹 11 2.2 LTE-A 介紹 12 2.2.1 載波聚合 12 2.2.2 進階多輸入多輸出 12 2.2.3 協調多點傳送與接收 13 2.2.4 中繼站 13 2.2.5 中繼站傳輸協定 13 2.2.6 半/全雙工中繼模組 17 2.3 相關文獻 17 2.3.1 訊號對噪音加干擾比 17 2.3.2 路徑損耗 18 2.3.3 香農定理 18 2.3.4 EXP/PF 排程演算法 19 2.3.5 混和型中繼站功率分配 19 第三章、動態中繼器功率分配 21 3.1 概述 21 3.2 潛在的問題 21 3.3 DRPA 機制描述 22 3.3.1 CQI 分配記錄 22 3.3.2 功率分配方式 24 3.3.3 傳輸功率記錄 25 第四章、模擬結果與討論 26 4.1 模擬環境及參數設定 26 4.2 結果與討論 27 4.2.1 位元錯誤率 27 4.2.2 區段錯誤率 29 4.2.3 頻譜效率 29 4.2.4 吞吐量 31 4.2.5 封包遺失率 32 4.2.6 功率節省 36 第五章、總結 38 參考文獻 39 誌謝 42 表目錄 1.1 通道服務品質指標。 3 2.1 中繼站轉傳協定選擇標準。 20 4.1 LTE-A 模擬參數。 28 圖目錄 2.1 分頻多工與分時多工。 6 2.2 E-UTRAN 架構圖。 7 2.3 LTE 整體架構圖。 8 2.4 使用者/控制介面。 9 2.5 下行資源圖。 11 2.6 載波聚合。 12 2.7 基地台訊號延伸。 14 2.8 容量增加圖。 14 2.9 中繼站應用圖。 15 2.10 中繼站傳輸協定。 16 2.11 雙工模組。 17 3.1 中繼站干擾示意圖。 22 3.2 流量示意圖。 24 3.3 DRPA 流程圖。 25 4.1 中繼站分佈示意圖。 26 4.2 MultiCell 分佈示意圖。 27 4.3 移動模型示意圖。 29 4.4 位元錯誤率。 30 4.5 區段錯誤率。 30 4.6 頻譜效率。 31 4.7 總吞吐量。 32 4.8 Best Effort 吞吐量。 33 4.9 Video 吞吐量。 33 4.10 VoIP 吞吐量。 34 4.11 Best Effort 封包遺失率。 35 4.12 Video 封包遺失率。 35 4.13 VoIP 封包遺失率。 36 4.14 功率節省。 37

    [1] A. B. Saleh, Ö. Bulakci, S. Redana, B. Raaf, and J. Hämäläinen, “A divideand-
    conquer approach to mitigate relay-to-relay interference,” in Proc. IEEE
    22nd International Symposium on Personal Indoor and Mobile Radio Communications
    (PIMRC), pp. 1889–1893, Sep. 2011.
    [2] A. Lo and I. Niemegeers, “Multi-hop relay architectures for 3GPP LTE-advanced,” in Proc. IEEE 9th Malaysia International Conference on Communications (MICC), pp. 123–127, Dec. 2009.
    [3] E. Atsan, R. Knopp, S. Diggavi, and C. Fragouli, “Towards integrating
    quantize-map-forward relaying into LTE,” in Proc. IEEE on Information Theory
    Workshop (ITW), pp. 212–216, Sep. 2012.
    [4] Z. Yang, Q. Zhang, and Z. Niu, “Throughput improvement by joint relay selection and link scheduling in relay-assisted cellular networks,” IEEE Transactions on Vehicular Technology, vol. 61, no. 6, pp. 2824–2835, July 2012.
    [5] M. S. Alam, J. W. Mark, and X. S. Shen, “Relay selection and resource allocation for multi-user cooperative ofdma networks,” IEEE Transactions on Wireless Communications, vol. 12, no. 5, pp. 2193–2205, May 2013.
    [6] A. Damnjanovic, J. Montojo, Y. Wei, T. Ji, T. Luo, M. Vajapeyam, T. Yoo,
    O. Song, and D. Malladi, “A survey on 3GPP heterogeneous networks,” IEEE on Wireless Communications, vol. 18, no. 3, pp. 10–21, June 2011.
    [7] X. Tao, X. Xu, and Q. Cui, “An overview of cooperative communications,” IEEE Communications Magazine, vol. 50, no. 6, pp. 65–71, June 2012.
    [8] X. Zhang, X. S. Shen, and L.-L. Xie, “Joint subcarrier and power allocation for cooperative communications in LTE-advanced networks,” IEEE Transactions on Wireless Communications, vol. 13, no. 2, pp. 658–668, Feb. 2014.
    [9] S. W. Peters, A. Y. Panah, K. T. Truong, and R. W. Heath, “Relay architectures for 3GPP LTE-advanced,” EURASIP Journal on Wireless Communications and Networking, Mar. 2009.
    [10] M. F. Feteiha and H. S. Hassanein, “Cooperative vehicular ad-hoc transmission for LTE-a mimo-downlink using amplify-and-forward relaying,” in Proc. IEEE on Global Communications Conference (GLOBECOM), pp. 4232–4237, Dec. 2013.
    [11] W. Zhuang and M. Ismail, “Cooperation in wireless communication networks,” IEEE on Wireless Communications, vol. 19, no. 2, pp. 10–20, Apr. 2012.
    [12] V. Monteiro, T. Ramrekha, D. Yang, J. Rodriguez, S. Mumtaz, and C. Politis, “An energy efficient proposal in shared relay-based LTE network,” in Proc. 10th International Symposium on Wireless Communication Systems (ISWCS), pp. 1–5, VDE, Aug. 2013.
    [13] J. H. Rhee, J. M. Holtzman, and D. K. Kim, “Scheduling of real/non-real time
    services: adaptive exp/pf algorithm,” in Proc. IEEE 57th Semiannual on Vehicular Technology Conference (SVTC), vol. 1, pp. 462–466, Apr. 2003.
    [14] F. Capozzi, G. Piro, L. A. Grieco, G. Boggia, and P. Camarda, “Downlink packet scheduling in LTE cellular networks: Key design issues and a survey,” IEEE Communications Surveys & Tutorials, vol. 15, no. 2, pp. 678–700, May 2013.
    [15] S. Malik, B. Kim, S. Moon, C. You, H. Liu, J. H. Kim, and I. Hwang, “Hybrid multihop relay protocol using dynamic power allocation for LTE-advanced system,” Wireless personal communications, vol. 77, no. 4, pp. 2945–2958, Aug. 2014.
    [16] H. Halabian, I. Lambadaris, C. H. Lung, and A. Srinivasan, “Throughput optimal relay selection in multiuser cooperative relaying networks,” in Proc. IEEE MILITARY COMMUNICATIONS CONFERENCE (IMCC), pp. 507–512, Oct. 2010.
    [17] L. Gkatzikis and I. Koutsopoulos, “Low complexity algorithms for relay selection and power control in interference-limited environments,” in Proc. IEEE Proceedings of the 8th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), pp. 278–287, May 2010.
    [18] I. Ben Chaabane, S. Hamouda, and S. Tabbane, “A novel relay selection scheme for LTE-advanced system under delay and load constraints,” in Proc. IEEE Wireless Communications and Networking Conference Workshops (WCNCW), pp. 263–267, Apr. 2012.
    [19] G. Piro, L. A. Grieco, G. Boggia, F. Capozzi, and P. Camarda, “Simulating LTE cellular systems: an open-source framework,” IEEE Transactions on Vehicular Technology, vol. 60, no. 2, pp. 498–513, Feb. 2011.
    [20] M. Minelli, M. Coupechoux, J. M. Kelif, M. Ma, and P. Godlewski, “Relays enhanced LTE-advanced networks performance studies,” in Proc. IEEE 34th on Sarnoff Symposium (SS), pp. 1–5, May 2011.

    QR CODE