簡易檢索 / 詳目顯示

研究生: 徐培凱
Pei-Kai Hsu
論文名稱: 表面結構對Ag/CeO2中空球室溫鐵磁性的影響
Effect of Surface Structure on Room Temperature Ferromagnetic of Hollow sphere Ag/CeO2
指導教授: 陳詩芸
Shih-Yun Chen
口試委員: 陳良益
Liang-Yih Chen
宋振銘
Jenn-Ming Song
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 83
中文關鍵詞: 表面結構中空球室溫鐵磁性
外文關鍵詞: Surface Structure, Hollow sphere, Room Temperature Ferromagnetic
相關次數: 點閱:629下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗以噴霧熱裂解法合成二氧化鈰顆粒中空球,並以初濕含浸法將奈米銀顆粒沉積於二氧化鈰表面。所合成的樣品首先以X 光繞射儀、穿透式電子顯微鏡、顯微拉曼光譜儀,以及 X 光吸收光譜分析其成分、形貌、結構與價態變化。由 SEM 及 TEM 觀察可以得知,噴霧裂解所製成之中空 CeO2 球再經過大氣下退火後直徑由平均約 400 奈米上升至 600 奈米,殼層厚度約為 30 奈米。所沉積的銀均勻的分佈在球表面上,銀顆粒大小約為 15 至 30 奈米,非形成一個連續的殼層。X 光吸收光譜與拉曼光譜的測量分析指出,當銀奈米顆粒沉積於 CeO2 中空球表面或是經過硝酸處理後,Ce3+ 與氧空缺含量皆增加,並且發現有電荷轉移之現象。接著以振動樣品磁力量測進行室溫下的磁性量測,發現所有樣品皆具有室溫鐵磁特性。而其磁性上升結果不對應於整體缺陷量之增加,因此除了缺陷的影響外,還討論了空心球表面結構對磁性的影響。


In this study, specific hollow Ag/CeO2 composite were synthesized by using a two-step method. Hollow CeO2 spheres were prepared by spray pyrolysis method at first. Then Ag nanoparticles were deposited on the surface of CeO2 sphere by wetness incipient method. Microstructures of Ag/CeO2, including phase, size, defects, and distribution of Ag NPs, were investigated by XRD, X-Ray Absorption Spectroscopy (XAS), Raman Spectroscopy, SEM and TEM. Magnetic behavior was performed by Vibrating Sample Magnetometer (VSM) at room temperature. Microstructural investigations demonstrated that the average radius of hollow CeO2 sphere after calcination increased from 400 nm to 600 nm, while the shell thickness is about 30 nm. Ag NPs with size ranges from 15 to 30 nm was randomly distributed on the surface of hollow sphere. Spectroscopy analysis showed that defects increased after both Ag deposition and processing in HNO3. All sample showed enhanced room temperature ferromagnetism as comparing with bare hollow CeO2 sphere. However the enhanced of Ms did not correspond with the increased of defects. Accordingly, in addition to the effect of defects, the role of surface structure of hollow sphere play on magnetism were also discussed.

摘要 I Abstract II 致謝 III 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 4 2.1 稀磁性半導體 4 2.1.1 稀磁性半導體簡史 4 2.1.2 稀磁性半導體磁性機制來源 5 2.1.3 稀磁性半導體種類 8 2.2 材料性質與研究背景 10 2.2.1 二氧化鈰基本性質 10 2.2.2 二氧化鈰之應用 12 2.2.3 二氧化鈰之製備方法 15 2.3 噴霧熱裂解法 20 2.3.1 顆粒形成機制 22 2.3.2 靜電沉積技術 23 2.4 二氧化鈰之缺陷與形成介面相關回顧 24 2.4.1 缺陷分析 24 2.4.2 形成介面 25 2.5 Zeta potential 27 2.5.1 膠體粒子表面電荷來源 27 2.5.2 電雙層理論 28 2.5.3 外加電場環境下的電雙層模型 30 2.5.4 Zeta 電位原理 32 第三章 實驗方法 34 3.1 實驗藥品 34 3.2 實驗流程 34 3.2.1 中空二氧化鈰之製備 34 3.2.2 奈米銀顆粒沉積 35 3.3 性質分析 35 3.3.1 X光繞射分析 35 3.3.2 穿透式電子顯微鏡 36 3.3.3 拉曼光譜分析 37 3.3.4 X光吸收光譜分析 38 3.3.5 振動樣品磁力量測 40 第四章 結果與討論 42 4.1 退火對 CeO2中空球結構之影響 42 4.1.1 SEM 分析 42 4.1.2 XRD 分析 43 4.1.3 TEM 分析 44 4.1.4 XANES 分析 45 4.1.5 Raman 光譜分析 46 4.2 CeO2中空球表面成長奈米 Ag 顆粒後之微結構與性質分析 48 4.2.1 XRD 分析 48 4.2.2 TEM 分析 49 4.2.3 XANES 分析 50 4.2.4 Raman 光譜分析 52 4.2.5 VSM 磁性性質 53 4.3 CeO2 中空球表面狀態對其結構與磁性之影響 54 4.3.1 XRD 分析 54 4.3.2 SEM 分析 55 4.3.3 XANES 分析 56 4.3.4 VSM 磁性性質 57 4.3.5 Zeta potential 表面電位分析 58 第五章 結論 60

[1] Datta, S.; Das, B., Electronic analog of the electro‐optic modulator. Applied Physics Letters 1990, 56 (7), 665-667.
[2] Ohno, H., Making nonmagnetic semiconductors ferromagnetic. science 1998, 281 (5379), 951-956.
[3] Chen, S.-Y.; Tseng, E.; Lai, Y.-T.; Lee, W.; Gloter, A., Interface interactions and enhanced room temperature ferromagnetism of Ag@ CeO 2 nanostructures. Nanoscale 2017, 9 (30), 10764-10772.
[4] 胡裕民, III-V 稀磁性半導體薄膜之研究與發展. 物理雙月刊 2004, 26 (4), 587-598.
[5] Zheng, N., Introduction to Dilute Magnetic Semiconductors. Solid Sate II, Instructor 2008.
[6] Dietl, T.; Ohno, H.; Matsukura, F.; Cibert, J.; Ferrand, e. D., Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. science 2000, 287 (5455), 1019-1022.
[7] Zener, C., Interaction between the d shells in the transition metals. Physical Review 1951, 81 (3), 440.
[8] Coey, J.; Venkatesan, M.; Fitzgerald, C., Donor impurity band exchange in dilute ferromagnetic oxides. Nature materials 2005, 4 (2), 173.
[9] Venkatesan, M.; Fitzgerald, C.; Coey, J., Thin films: unexpected magnetism in a dielectric oxide. Nature 2004, 430 (7000), 630.
[10] Hong, N. H.; Sakai, J.; Prellier, W.; Hassini, A.; Ruyter, A.; Gervais, F., Ferromagnetism in transition-metal-doped Ti O 2 thin films. Physical Review B 2004, 70 (19), 195204.
[11] Reed, M.; El-Masry, N.; Stadelmaier, H.; Ritums, M.; Reed, M.; Parker, C.; Roberts, J.; Bedair, S., Room temperature ferromagnetic properties of (Ga, Mn) N. Applied Physics Letters 2001, 79 (21), 3473-3475.
[12] Alsaad, A.; Qattan, I., Comparative study of magnetic properties of dilute Fe doped with transition magnetic ions and GaN, InN doped with rare-earth magnetic ions. Physica B: Condensed Matter 2014, 432, 77-83.
[13] Saeki, H.; Tabata, H.; Kawai, T., Magnetic and electric properties of vanadium doped ZnO films. Solid State Communications 2001, 120 (11), 439-443.
[14] Park, W. K.; Ortega-Hertogs, R. J.; Moodera, J. S.; Punnoose, A.; Seehra, M., Semiconducting and ferromagnetic behavior of sputtered Co-doped TiO 2 thin films above room temperature. Journal of applied Physics 2002, 91 (10), 8093-8095.
[15] Matsumoto, Y.; Murakami, M.; Shono, T.; Hasegawa, T.; Fukumura, T.; Kawasaki, M.; Ahmet, P.; Chikyow, T.; Koshihara, S.-y.; Koinuma, H., Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 2001, 291 (5505), 854-856.
[16] Gschneidner, K. A.; Eyring, L.; Lander, G. H., Handbook on the physics and chemistry of rare earths. Elsevier: 2002; Vol. 32.
[17] Kirk, N.; Wood, J., The effect of the calcination process on the crystallite shape of sol-gel cerium oxide used for glass polishing. Journal of materials science 1995, 30 (8), 2171-2175.
[18] Patsalas, P.; Logothetidis, S.; Sygellou, L.; Kennou, S., Structure-dependent electronic properties of nanocrystalline cerium oxide films. Physical Review B 2003, 68 (3), 035104.
[19] Sugiura, M., Oxygen storage materials for automotive catalysts: ceria-zirconia solid solutions. Catalysis Surveys from Asia 2003, 7 (1), 77-87.
[20] Liu, Y.; Lockman, Z.; Aziz, A.; MacManus-Driscoll, J., Size dependent ferromagnetism in cerium oxide (CeO2) nanostructures independent of oxygen vacancies. Journal of Physics: Condensed Matter 2008, 20 (16), 165201.
[21] Chen, X.; Li, G.; Su, Y.; Qiu, X.; Li, L.; Zou, Z., Synthesis and room-temperature ferromagnetism of CeO2 nanocrystals with nonmagnetic Ca2+ doping. Nanotechnology 2009, 20 (11), 115606.
[22] Trovarelli, A., Catalytic properties of ceria and CeO2-containing materials. Catalysis Reviews 1996, 38 (4), 439-520.
[23] Oh, S. H.; Eickel, C. C., Effects of cerium addition on CO oxidation kinetics over alumina-supported rhodium catalysts. Journal of Catalysis 1988, 112 (2), 543-555.
[24] Nunan, J. G.; Robota, H. J.; Cohn, M. J.; Bradley, S. A., Physicochemical properties of Ce-containing three-way catalysts and the effect of Ce on catalyst activity. Journal of Catalysis 1992, 133 (2), 309-324.
[25] Serre, C.; Garin, F.; Belot, G.; Maire, G., Reactivity of Pt/Al2O3 and Pt-CeO2Al2O3 catalysts for the oxidation of carbon monoxide by oxygen: II. Influence of the pretreatment step on the oxidation mechanism. Journal of Catalysis 1993, 141 (1), 9-20.
[26] Frost, J., Junction effect interactions in methanol synthesis catalysts. Nature 1988, 334 (6183), 577.
[27] Golunski, S. E.; Hatcher, H. A.; Rajaram, R. R.; Truex, T. J., Origins of low-temperature three-way activity in Pt/CeO2. Applied Catalysis B: Environmental 1995, 5 (4), 367-376.
[28] Damyanova, S.; Bueno, J., Effect of CeO2 loading on the surface and catalytic behaviors of CeO2-Al2O3-supported Pt catalysts. Applied Catalysis A: General 2003, 253 (1), 135-150.
[29] Kašpar, J.; Fornasiero, P.; Graziani, M., Use of CeO2-based oxides in the three-way catalysis. Catalysis Today 1999, 50 (2), 285-298.
[30] Li, R.; Yabe, S.; Yamashita, M.; Momose, S.; Yoshida, S.; Yin, S.; Sato, T., Synthesis and UV-shielding properties of ZnO-and CaO-doped CeO2 via soft solution chemical process. Solid State Ionics 2002, 151 (1-4), 235-241.
[31] Bamwenda, G. R.; Arakawa, H., Cerium dioxide as a photocatalyst for water decomposition to O2 in the presence of Ceaq4+ and Feaq3+ species. Journal of Molecular Catalysis A: Chemical 2000, 161 (1-2), 105-113.
[32] Bamwenda, G. R.; Uesigi, T.; Abe, Y.; Sayama, K.; Arakawa, H., The photocatalytic oxidation of water to O2 over pure CeO2, WO3, and TiO2 using Fe3+ and Ce4+ as electron acceptors. Applied Catalysis A: General 2001, 205 (1-2), 117-128.
[33] Yokokawa, H.; Sakai, N.; Horita, T.; Yamaji, K.; Brito, M., Electrolytes for solid-oxide fuel cells. MRS bulletin 2005, 30 (8), 591-595.
[34] Sammes, N.; Cai, Z., Ionic conductivity of ceria/yttria stabilized zirconia electrolyte materials. Solid State Ionics 1997, 100 (1-2), 39-44.
[35] Gauckler, L. J.; Go, M.; Schneider, D., Nonstoichiometry and defect chemistry of ceria solid solutions. Journal of Electroceramics 1997, 1 (2), 165-172.
[36] Atanasov, P.; Okato, T.; Tomov, R.; Obara, M., (1 1 0) Nd: KGW waveguide films grown on CeO2/Si substrates by pulsed laser deposition. Thin solid films 2004, 453, 150-153.
[37] Shirakawa, M.; Unno, J.; Aizawa, K.; Kusunoki, M.; Mukaida, M.; Ohshima, S., Fabrication and characterization of a CeO2 buffer layer on c-plane and tilt-c-plane sapphire substrates. Physica C: Superconductivity 2003, 392, 1346-1352.
[38] Izu, N.; Shin, W.; Murayama, N.; Kanzaki, S., Resistive oxygen gas sensors based on CeO2 fine powder prepared using mist pyrolysis. Sensors and Actuators B: Chemical 2002, 87 (1), 95-98.
[39] Izu, N.; Shin, W.; Murayama, N., Fast response of resistive-type oxygen gas sensors based on nano-sized ceria powder. Sensors and Actuators B: Chemical 2003, 93 (1-3), 449-453.
[40] Trinchi, A.; Li, Y.; Wlodarski, W.; Kaciulis, S.; Pandolfi, L.; Viticoli, S.; Comini, E.; Sberveglieri, G., Investigation of sol–gel prepared CeO2–TiO2 thin films for oxygen gas sensing. Sensors and Actuators B: Chemical 2003, 95 (1-3), 145-150.
[41] Lee, W.; Shen, P., Laser ablation deposition of CeO2− x epitaxial domains on glass. Journal of Solid State Chemistry 2002, 166 (1), 197-202.
[42] Boffa, V.; Petrisor, T.; Ceresara, S.; Ciontea, L.; Fabbri, F.; Scardi, P., Laser-ablation deposition of CeO2 thin films on biaxially textured nickel substrates. Physica C: Superconductivity 1999, 312 (3-4), 202-212.
[43] Wu, L.; Wiesmann, H.; Moodenbaugh, A.; Klie, R.; Zhu, Y.; Welch, D.; Suenaga, M., Oxidation state and lattice expansion of CeO 2− x nanoparticles as a function of particle size. Physical Review B 2004, 69 (12), 125415.
[44] Skårman, B.; Nakayama, T.; Grandjean, D.; Benfield, R.; Olsson, E.; Niihara, K.; Wallenberg, L., Morphology and Structure of CuO x/CeO2 Nanocomposite Catalysts Produced by Inert Gas Condensation: An HREM, EFTEM, XPS, and High-Energy Diffraction Study. Chemistry of materials 2002, 14 (9), 3686-3699.
[45] Tsai, W.-C.; Tseng, T.-Y., Structural and electrical properties of cerium dioxide films grown by RF magnetron sputtering. Journal of Materials Science: Materials in Electronics 1997, 8 (5), 313-320.
[46] Hirano, M.; Kato, E., Hydrothermal synthesis of cerium (IV) oxide. Journal of the American Ceramic Society 1996, 79 (3), 777-780.
[47] Liu, J.; Wang, L.; Wu, H.; Mo, L.; Lou, H.; Zheng, X., Synthesis and characterization of CeO 2 by the hydrothermal method assisted by carboxymethylcellulose sodium. Reaction Kinetics and Catalysis Letters 2009, 98 (2), 311.
[48] Bae, D.-S.; Lim, B.; Kim, B.-I.; Han, K.-S., Synthesis and characterization of ultrafine CeO2 particles by glycothermal process. Materials Letters 2002, 56 (4), 610-613.
[49] Masui, T.; Fujiwara, K.; Machida, K.-i.; Adachi, G.-y.; Sakata, T.; Mori, H., Characterization of cerium (IV) oxide ultrafine particles prepared using reversed micelles. Chemistry of Materials 1997, 9 (10), 2197-2204.
[50] Sathyamurthy, S.; Leonard, K. J.; Dabestani, R. T.; Paranthaman, M. P., Reverse micellar synthesis of cerium oxide nanoparticles. Nanotechnology 2005, 16 (9), 1960.
[51] Li, M.; Ge, S.; Qiao, W.; Zhang, L.; Zuo, Y.; Yan, S., Relationship between the surface chemical states and magnetic properties of CeO 2 nanoparticles. Applied Physics Letters 2009, 94 (15), 152511.
[52] Yin, L.; Wang, Y.; Pang, G.; Koltypin, Y.; Gedanken, A., Sonochemical synthesis of cerium oxide nanoparticles—effect of additives and quantum size effect. Journal of Colloid and Interface Science 2002, 246 (1), 78-84.
[53] Li, Y. X.; Zhou, X. Z.; Wang, Y.; You, X. Z., Preparation of nano-sized CeO2 by mechanochemical reaction of cerium carbonate with sodium hydroxide. Materials letters 2004, 58 (1-2), 245-249.
[54] Tsuzuki, T.; McCormick, P. G., Synthesis of ultrafine ceria powders by mechanochemical processing. Journal of the American Ceramic Society 2001, 84 (7), 1453-1458.
[55] Lim, G. J.; Lee, J. H.; Kim, J. S.; Lee, H. W.; Hyun, S. H. In Mechanochemical synthesis of nano-sized CeO2 and its application for CMP slurry, Materials Science Forum, Trans Tech Publ: 2004; pp 1105-1108.
[56] Zhou, Y.; Phillips, R. J.; Switzer, J. A., Electrochemical synthesis and sintering of nanocrystalline cerium (IV) oxide powders. Journal of the American Ceramic Society 1995, 78 (4), 981-985.
[57] Czerwinski, F.; Szpunar, J., The nanocrystalline ceria sol-gel coatings for high temperature applications. Journal of Sol-Gel Science and Technology 1997, 9 (1), 103-114.
[58] 連昭晴, 鐵/金核殼型磁性複合奈米粒子之製備與應用. 成功大學化學工程學系學位論文 2004, 1-113.
[59] Chen, S.-Y.; Lu, Y.-H.; Huang, T.-W.; Yan, D.-C.; Dong, C.-L., Oxygen vacancy dependent magnetism of CeO2 nanoparticles prepared by thermal decomposition method. The Journal of Physical Chemistry C 2010, 114 (46), 19576-19581.
[60] Kirk, N.; Wood, J., The effect of the calcination process on the crystallite shape of sol-gel cerium oxide used for glass polishing. Journal of materials science 1995, 30 (8), 2171-2175.
[61] Xu, H.; Gao, L.; Gu, H.; Guo, J.; Yan, D., Synthesis of solid, spherical CeO2 particles prepared by the spray hydrolysis reaction method. Journal of the American Ceramic Society 2002, 85 (1), 139-144.
[62] Elidrissi, B.; Addou, M.; Regragui, M.; Monty, C.; Bougrine, A.; Kachouane, A., Structural and optical properties of CeO2 thin films prepared by spray pyrolysis. Thin Solid Films 2000, 379 (1-2), 23-27.
[63] Mädler, L.; Stark, W. J.; Pratsinis, S. E., Flame-made ceria nanoparticles. Journal of Materials Research 2002, 17 (6), 1356-1362.
[64] Messing, G. L.; Zhang, S. C.; Jayanthi, G. V., Ceramic powder synthesis by spray pyrolysis. Journal of the American Ceramic Society 1993, 76 (11), 2707-2726.
[65] Okuyama, K., Preparation of micro-controlled particles usingaerosol process. Journal of Aerosol Science 1991, 22, S7-S10.
[66] Clement, C. F.; Ford, I. J., Gas-to-particle conversion in the atmosphere: II. Analytical models of nucleation bursts. Atmospheric Environment 1999, 33 (3), 489-499.
[67] Chen, C.; Tseng, T.; Tsai, S.; Lin, C.; Lin, H., Effect of precursor characteristics on zirconia and ceria particle morphology in spray pyrolysis. Ceramics International 2008, 34 (2), 409-416.
[68] Kraemer, H. F.; Johnstone, H., Collection of aerosol particles in presence of electrostatic fields. Industrial & Engineering Chemistry 1955, 47 (12), 2426-2434.
[69] Liu, S.; Dasgupta, P. K., Automated System for Chemical Analysis of Airborne Particles Based on Corona-Free Electrostatic Collection. Analytical Chemistry 1996, 68 (20), 3638-3644.
[70] J. Paier, C. Penschke, and J. Sauer, Oxygen Defects and Surface Chemistry of Ceria: Quantum Chemical Studies Compared to Experiment, Chemical Reviews, vol. 113, pp. 3949-3985, 2013.
[71] J.-F. Jerratsch, X. Shao, N. Nilius, H.-J. Freund, C. Popa, M. V.Ganduglia-Pirovano, et al., Electron Localization in Defective Ceria Films: A Study with Scanning-Tunneling Microscopy and Density-Functional Theory, Physical Review Letters, vol. 106, p. 246801, 2011..
[72] H.-Y. Li, H.-F. Wang, X.-Q. Gong, Y.-L. Guo, Y. Guo, G. Lu, et al., Multiple configurations of the two excess 4f electrons on defective CeO2(111): Origin and implications, Physical Review B, vol. 79, p. 193401, 2009.
[73] M. V. Ganduglia-Pirovano, J. L. F. Da Silva, and J. Sauer, Density-Functional Calculations of the Structure of Near-Surface Oxygen Vacancies and Electron Localization on CeO2(111), Physical Review Letters, vol. 102, p. 026101, 2009.
[74] Škoda, M.; Cabala, M.; Matolinova, I.; Prince, K.; Skála, T.; Šutara, F.; Veltruska, K.; Matolín, V., Interaction of Au with CeO 2 (111): a photoemission study. The Journal of chemical physics 2009, 130 (3), 034703.
[75] Ou, D. R.; Mori, T.; Togasaki, H.; Takahashi, M.; Ye, F.; Drennan, J., Microstructural and metal− support interactions of the Pt− CeO2/C catalysts for direct methanol fuel cell application. Langmuir 2011, 27 (7), 3859-3866.
[76] 蕭印廷, 中空CeO2球體與奈米Ag顆粒之介面交互作用及其表面增強拉曼特性研究. 2017.
[77] Delgado, Á. V., Interfacial electrokinetics and electrophoresis. CRC Press: 2001; Vol. 106.
[78] 張有義, 郭蘭生編著 D. J. shaw 原著, 膠體及界面化學入門(Introduction to colloid and surface chemistry 4/e). 高立圖書有限公司, 2004.
[79] D. Myers., Surfaces, Interfaces, and Colloids: Principles and Applications,– 2nd (ed.). Wiley-Vch, 1999, ISBN 0-471-3306-4.
[80] 鄭信民; 林麗娟; 工研院材料所微結構分析實驗室*副研究員, 主.; 自從X, X光繞射應用簡介. 工業材料雜誌, 材料分析技術專題 2002, (181), 100-108.
[81] Koningsberger, D.; Prins, R., X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES. 1988.
[82] Sayers, D. E.; Stern, E. A.; Lytle, F. W., New technique for investigating noncrystalline structures: Fourier analysis of the extended X-ray—absorption fine structure. Physical review letters 1971, 27 (18), 1204.
[83] Teo, B. K., EXAFS: basic principles and data analysis. Springer Science & Business Media: 2012; Vol. 9.
[84] Nachimuthu, P.; Shih, W.-C.; Liu, R.-S.; Jang, L.-Y.; Chen, J.-M., The study of nanocrystalline cerium oxide by X-ray absorption spectroscopy. Journal of Solid State Chemistry 2000, 149 (2), 408-413.
[85] Popović, Z.; Dohčević‐Mitrović, Z.; Šćepanović, M.; Grujić‐Brojčin, M.; Aškrabić, S., Raman scattering on nanomaterials and nanostructures. Annalen der Physik 2011, 523 (1‐2), 62-74.
[86] McBride, J.; Hass, K.; Poindexter, B.; Weber, W., Raman and x‐ray studies of Ce1− x RE x O2− y, where RE= La, Pr, Nd, Eu, Gd, and Tb. Journal of Applied Physics 1994, 76 (4), 2435-2441.
[87] Nakajima, A.; Yoshihara, A.; Ishigame, M., Defect-induced Raman spectra in doped CeO2. Physical Review B 1994, 50 (18), 13297.
[88] Taniguchi, T.; Watanabe, T.; Sugiyama, N.; Subramani, A.; Wagata, H.; Matsushita, N.; Yoshimura, M., Identifying defects in ceria-based nanocrystals by UV resonance Raman spectroscopy. The Journal of Physical Chemistry C 2009, 113 (46), 19789-19793.
[89] Bzowski, A.; Sham, T.; Yiu, Y., Ag L-edge x-ray-absorption near-edge-structure study of charge redistribution at the Ag site in Au-Ag alloys. Physical Review B 1994, 49 (19), 13776.
[90] Drube, W.; Treusch, R.; Sham, T.; Bzowski, A.; Soldatov, A., Sublifetime-resolution Ag L 3-edge XANES studies of Ag-Au alloys. Physical Review B 1998, 58 (11), 6871.

無法下載圖示 全文公開日期 2023/08/11 (校內網路)
全文公開日期 2028/08/11 (校外網路)
全文公開日期 2028/08/11 (國家圖書館:臺灣博碩士論文系統)
QR CODE