簡易檢索 / 詳目顯示

研究生: 牛玉琉
Siti - Maghfirotul Ulyah
論文名稱: Two Option Pricing Models for Leptokurtic Risk-Neutral Asset Return Distributions and Their Comparison with Series Expansion Approaches
Two Option Pricing Models for Leptokurtic Risk-Neutral Asset Return Distributions and Their Comparison with Series Expansion Approaches
指導教授: 繆維中
Wei-Chung Miao
林昌碩
Chang-Shuo Lin
口試委員: 劉代洋
Day-Yang Liu
謝劍平
C.-P. Shieh
學位類別: 碩士
Master
系所名稱: 管理學院 - 財務金融研究所
Graduate Institute of Finance
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 86
中文關鍵詞: leptokurticmultimodalityjump-diffusionnormalmixtureseriesapproximation
外文關鍵詞: leptokurtic, multimodality, jump-diffusion, normal mixture, series approximation
相關次數: 點閱:537下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


The characteristics of asset return distribution in the market are far from normal distribution, especially for exchange rate return. It usually leptokurtic, heavy-tailed, and sometimes having more than one mode (bimodal). Skewness and kurtosis are the common measures of leptokurtic and asymmetry issues in the asset return. Jump is also considered as a source of leptokurtic feature. The purpose of this study is to give some evidences to show that series approximation is not proper in the option pricing. Another purpose is to have an option pricing model that can account the extreme characteristics of the asset return distribution such as very high kurtosis and multimodality issues. Two constructed models are the Kou's jump-diffusion model with one jump (KJD1) that will be applied to quanto options, and a model based on the standardized normal mixture (SNM) distribution. This study concludes that those two models can account for arbitrarily high kurtosis and very skewed return distribution. Besides, the second model can account for bimodality. This study also presents that the series approximation models should not be applied to the return with high kurtosis (>7). For in-the-money (ITM) options, the pricing errors are smaller than that for out-of-the-money (OTM) and at-the-money (ATM) options. With very large kurtosis, the price from the series approximations may become negative for ATM options, which are not trustable.

Abstract i Acknowledgements ii Contents iii List of Figures vi List of Tables viii 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Kou's Jump-diffusion Model with One Jump (KJD1) . . . . . . . . . . . 3 1.3 The Option Pricing Model Based on the Standardized Mixture Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 The Organization of this Thesis . . . . . . . . . . . . . . . . . . . . . . . 6 2 The Kou’s Jump-diffusion Model with One Jump 7 2.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 The Constructed Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Return Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.1 Probability Density Function . . . . . . . . . . . . . . . . . . . . 13 2.3.2 The Main Statistics of the Return . . . . . . . . . . . . . . . . . 15 2.3.3 Call Option Price . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4 Numerical Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4.1 The Option Prices of the KJD1 Model with Symmetric Jump Size Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4.2 The Option Prices of the KJD1 Model with Asymmetric Jump Size Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.5 The Comparison with KJD Model . . . . . . . . . . . . . . . . . . . . . 25 2.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3 The Option Pricing Model Based on the Standardized Normal Mixture Distribution 28 3.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2 The Normal Mixture Distribution . . . . . . . . . . . . . . . . . . . . . . 29 3.2.1 The Main Statistics of The Normal Mixture Distribution . . . . . 30 3.2.2 The Standardized Normal Mixture (SNM) Distribution . . . . . . 31 3.2.3 The Modality of Normal Mixture Distribution . . . . . . . . . . . 32 3.2.4 The Symmetric Case of the SNM Distribution . . . . . . . . . . . 33 3.2.5 The Asymmetric Case of the SNM Distribution . . . . . . . . . . 35 3.3 Return Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3.1 The Main Statistics of the Return . . . . . . . . . . . . . . . . . 37 3.3.2 The Condition of Unimodality . . . . . . . . . . . . . . . . . . . 38 3.3.3 The Unimodal-Symmetric Return . . . . . . . . . . . . . . . . . 38 3.3.4 The Unimodal-Asymmetric Return . . . . . . . . . . . . . . . . 42 3.3.5 The Bimodal Return Distribution . . . . . . . . . . . . . . . . . 45 3.3.6 Call Option Price . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.4 Numerical Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.5 The Comparison with Black-Scholes Model . . . . . . . . . . . . . . . . 52 3.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4 Conclusion 56 4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 A The Series Expansions 59 A.1 The pdf of Gram-Charlier and Edgeworth Series Expansions . . . . . . . 59 A.2 Some Figures of the pdf of Gram-Charlier and Edgeworth Returns . . . . 60 B The Kou’s Jump-diffusion Model with One Jump 64 B.1 The Call Price Functions in KJD1 Call Option Price Formula . . . . . . 64 C Numerical Works in Chapter 3 66 C.1 The Unimodal-Symmetric Case . . . . . . . . . . . . . . . . . . . . . . 66 C.2 The Unimodal-Asymmetric Case . . . . . . . . . . . . . . . . . . . . . . 68 C.3 The Bimodal Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Bibliography 72

Amin, K. I. (1993), ‘Jump di usion option valuation in discrete time’, The journal of
finance 48(5), 1833–1863.
Backus, D. K., Foresi, S. & Wu, L. (2004), ‘Accounting for biases in black-scholes’,
Available at SSRN 585623 .
Behboodian, J. (1970), ‘On the modes of a mixture of two normal distributions’, Technometrics 12(1), 131–139.
Björk, T. (2009), Arbitrage theory in continuous time, Oxford university press.
Black, F. & Scholes, M. (1973), ‘The pricing of options and corporate liabilities’, The
journal of political economy pp. 637–654.
Brigo, D. & Mercurio, F. (2002), ‘Lognormal-mixture dynamics and calibration to
market volatility smiles’, International Journal of Theoretical and Applied Finance
5(04), 427–446.
Cont, R. (2001), ‘Empirical properties of asset returns: stylized facts and statistical issues’, Quantitative Finance 1(2), 223–236.
Corrado, C. J., Su, T. et al. (1996), ‘S&p 500 index option tests of jarrow and rudd’s
approximate option valuation formula’, Journal of Futures Markets 16(6), 611–629.
Cox, J. C. & Ross, S. A. (1976), ‘The valuation of options for alternative stochastic processes’, Journal of financial economics 3(1-2), 145–166.
Eisenberger, I. (1964), ‘Genesis of bimodal distributions’, Technometrics 6(4), 357–363.
Glasserman, P. (2003), Monte Carlo methods in financial engineering, Vol. 53, Springer
Science & Business Media.
Hull, J. C. (2012), Options, futures, and other derivatives, Essex: Pearson Education
Limited.
Jarrow, R. & Rudd, A. (1982), ‘Approximate option valuation for arbitrary stochastic
processes’, Journal of financial Economics 10(3), 347–369.
Jurczenko, E., Maillet, B. & Negrea, B. (2002), ‘Revisited multi-moment approximate
option pricing models: a general comparison (part 1)’.
Kotz, S., Kozubowski, T. & Podgorski, K. (2012), The Laplace distribution and generalizations: a revisit with applications to communications, economics, engineering, and
finance, Springer Science & Business Media.
Kou, S. G. (2002), ‘A jump-di usion model for option pricing’, Management science
48(8), 1086–1101.
Kwok, Y.-k. & Wong, H.-y. (2000), ‘Currency-translated foreign equity options with path
dependent features and their multi-asset extensions’, International Journal of Theoretical and Applied Finance 3(02), 257–278.
León, Á., Mencía, J. & Sentana, E. (2012), ‘Parametric properties of semi-nonparametric
distributions, with applications to option valuation’, Journal of Business & Economic
Statistics .
Madan, D. B., Carr, P. P. & Chang, E. C. (1998), ‘The variance gamma process and option
pricing’, European finance review 2(1), 79–105.
Merton, R. C. (1976), ‘Option pricing when underlying stock returns are discontinuous’,
Journal of financial economics 3(1-2), 125–144.
Ritchey, R. J. (1990), ‘Call option valuation for discrete normal mixtures’, Journal of
Financial Research 13(4), 285–296.
Rubinstein, M. (1998), ‘Edgeworth binomial trees’, The Journal of Derivatives 5(3), 20–
27.
Xu, W., Wu, C. & Li, H. (2011), ‘Accounting for the impact of higher order moments in
foreign equity option pricing model’, Economic Modelling 28(4), 1726–1729.

QR CODE