簡易檢索 / 詳目顯示

研究生: 陳銘輝
Ming-Hui Chen
論文名稱: 柯克勞夫-沃爾頓式高昇壓功率轉換器
Cockcroft-Walton Type High Step-Up Power Converters
指導教授: 楊宗銘
Chung-Ming Young
口試委員: 葉勝年
Sheng-Nian Yeh
陳秋麟
Chern-Lin Chen
莫清賢
Chin-Sin Moo
賴炎生
Yen-Shin Lai
陳一通
Yie-Tone Chen
林瑞禮
Ray-Lee Lin
羅有綱
Yu-Kang Lo
陳良瑞
Liang-Rui Chen
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 159
中文關鍵詞: 高昇壓轉換器柯克勞夫-沃爾頓倍壓器功率因數修正
外文關鍵詞: high step-up converter, Cockcroft-Walton voltage multiplier, power factor correction
相關次數: 點閱:434下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出三個高昇壓轉換器於高壓直流之應用。這三個新型無變壓器的單級電路架構,其分別為高昇壓直流-直流轉換器、高昇壓單開關交流-直流轉換器及高昇壓四開關矩陣交流-直流轉換器。基於傳統柯克勞夫-沃爾頓倍壓器(Cockcroft-Walton Voltage Multiplier, CW-VM),每個所提出之轉換器,藉由增加柯克勞夫-沃爾頓倍壓器的階數,在不須要修正主開關電路的結構及其控制策略下,獲得高電壓增益。此外,本文提出一種新的柯克勞夫-沃爾頓倍壓器的電路表示法,以簡化電路之等效模型。而利用此方法,推導出本論文所提出三種轉換器的數學模型,可以增加模擬之運算效率。每個所提出之轉換器的電路操作原理、靜態增益推導、設計考量及控制策略,皆詳述於本文中。輸出電壓漣波的通式係以電流饋入分析法來推得,此電壓漣波是負載的函數,可以方便系統參數之設計;此外,本論文所提出之轉換器均工作於連續導通模式,控制策略是平均電流控制,且直接使用一個商用功率因數修正積體電路來實現每個轉換器的控制器。本論文實際建構三種高昇壓轉換器的實驗模型,以作為測試及評估之用,並分別由模擬及實驗結果證實了所提出之轉換器於高壓直流應用的可行性。三個所提出之轉換器的主要特點歸納如下:
    本文首先提出之高昇壓直流-直流轉換器具有低失真/低漣波/連續之輸入電流、高電壓增益、低的開關/二極體/電容器電壓應力等特點,相當適合用於低壓直流之發電系統。此外,基於一個n階的柯克勞夫-沃爾頓倍壓器,此轉換器無需外加分離電容器,即可提供適合的直流電源給一個(n+1)階層的變流器。此轉換器的控制策略使用了兩個獨立的開關頻率,一為高頻的操作以縮小電感之尺寸;而另一為相對低頻的操作,其依所需要之輸出電壓漣波而定。
    其次,本文另提出基於柯克勞夫-沃爾頓倍壓器之高昇壓單開關交流-直流轉換電路,其僅在傳統倍壓器上加入一個雙向開關及一個昇壓電感。相較於傳統的柯克勞夫-沃爾頓倍壓電路,此轉換器使用功率因數修正策略,提供具有半波對稱且低失真之線電流、高功率因數於交流電源端及適用於大範圍負載變動之可調直流輸出電壓。此高昇壓單開關交流-直流轉換器使用單週期控制(one-cycle control),其無需使用乘法器及偵測輸入交流電源,可簡化控制器的設計及減少控制電路的元件及成本。
    最後,本文提出之高昇壓矩陣式交流-直流轉換器,由四個雙向開關組成之矩陣式轉換器配置於交流電源及柯克勞夫-沃爾頓倍壓器之間,提供了高電源品質、可調節的輸出電壓及相當低的輸出漣波。文中的矩陣轉換器可操作於兩種獨立的頻率,其中之一係配合功率因數修正控制,另一則是用來控制矩陣轉換器之輸出頻率,改變此頻率可以調整柯克勞夫-沃爾頓倍壓器的輸出電壓漣波。


    This dissertation proposes three high step-up converters for high voltage dc applications. The three novel transformerless single-stage topologies are high step-up dc-dc converter, high step-up single-switch ac-dc converter and high step-up four-switch matrix ac-dc converter, respectively. Based on a conventional Cockcroft- Walton voltage multiplier (CW-VM), each proposed converter can provide high-voltage gain by increasing the stages of CW-VM without modifying the structure and control strategy of the main switch circuit. Moreover, this dissertation derives a new method of circuit representation for CW-VM, which simplifies the equivalent circuit. By using this method, the mathematical models corresponding to the three proposed converters are derived and used for simulations. The circuit operation principle, derivation of static gain, design considerations, and control strategy of each proposed converter are all detailed in this dissertation. Moreover, the current-fed analysis approach is used to derive a general expression of the output voltage ripple, which is a function of the output current and is able to facilitate the design of the system. In addition, a commercial average-current-mode control power factor correction (PFC) integrated circuit is used to achieve the control strategy for each proposed converter in continuous conduction mode. Three laboratory prototypes corresponding to the three proposed converters are built for test and evaluation. Both simulation and experimental results demonstrate the validity of each proposed converter for high voltage dc applications. The major features of the three proposed converters are summarized as follows:
    First, providing continuous input current with low ripple, high voltage gain and low voltage stress on the switches, diodes and capacitors, the proposed high step-up dc-dc converter is quite suitable for applying to low-level dc generation systems. Moreover, based on the n-stage CW-VM, this converter, without extra split capacitors, offers suitable dc sources for an (n+1)-level multilevel inverter. In this dissertation, the control strategy of the proposed high step-up dc-dc converter employs two independent frequencies, one of which operates at a high frequency such that the size of the boost inductor can be minimized, while the other one operates at relatively lower frequency and can be used to provide suitable output voltage ripple.
    Only one bidirectional switch and one boost inductor are added to a conventional CW-VM circuit, and this forms the second proposed high step-up single-switch ac-dc converter. Compared with the conventional CW-VM circuit, the proposed converter provides half-wave symmetry and low-distorted line current, high power factor at the ac source side and a regulated dc output voltage for a wide load range. In this dissertation, the power factor control strategy of this single-switch ac-dc converter is implemented by one-cycle control, in which the multiplier and sensing of the input ac voltage are unnecessary. Thus, this leads to simplifying the design of the controller.
    Finally, the third proposed converter is the high step-up four-switch matrix ac-dc converter, which is formed by arranging a four-bidirectional-switch matrix converter between the ac source and the CW-VM. The proposed matrix converter provides high quality of line conditions, adjustable output voltage, and especially low output ripple. Two independent frequencies are used to operate these four bidirectional switches, one of which is associated with PFC control and the other is used to set the output frequency of the matrix converter. The former operates at a high frequency such that the line current can be nearly sinusoidal, while the latter operates at relatively lower frequency and can be used to provide suitable output voltage ripple.

    Abstract (Chinese) I Abstract (English) III Acknowledgements (Chinese) V Contents VII List of Figures X List of Tables XV Notation and Abbreviations XVI Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Survey 3 1.3 Contributions of the Dissertation 8 1.4 Dissertation Outline 12 Chapter 2 Mathematical Models for All the Proposed Converters 14 2.1 Current-Fed CW-VM Mathematical Model Derivation 14 2.2 Mathematical Models for Extended Topologies of CW-VM 22 2.2.1 Modeling for Novel High Step-Up DC-DC Converter 24 2.2.2 Modeling for Novel Single-Phase High Step-Up Single-Switch AC-DC Converter 26 2.2.3 Modeling for Novel Single-Phase High Step-Up Four-Switch Matrix AC-DC Converter 27 Chapter 3 Analysis and Implementation of Novel High Step-Up DC-DC Converter 29 3.1 Steady-State Analysis 29 3.1.1 Circuit Operation Principle 29 3.1.2 Derivation of Static Gain 35 3.2 Design Considerations 37 3.2.1 Capacitor Voltage Stress 37 3.2.2 Switch Voltage and Current Stresses 39 3.2.3 Diode Voltage and Current Stresses 39 3.2.4 Number of Major Components 39 3.2.5 Input Inductance Design 41 3.2.6 Output Capacitance Design 41 3.3 Control Strategy 48 3.4 Simulation and Experimental Results 56 3.5 Summary 63 Chapter 4 Analysis and Implementation of Novel Single-Phase Single-Switch AC-DC Converter with Power Factor Correction 64 4.1 Steady-State Analysis 64 4.1.1 Circuit Operation Principle 64 4.1.2 Derivation of Static Gain 70 4.2 Design Considerations 73 4.2.1 Capacitor Voltage Stress 73 4.2.2 Switch Voltage and Current Stresses 73 4.2.3 Diode Voltage and Current Stresses 74 4.2.4 Input Inductance Design 74 4.2.5 Output Capacitance Design 75 4.3 Control Strategy 81 4.4 Simulation and Experimental Results 84 4.5 Summary 92 Chapter 5 Analysis and Implementation of Novel Single-Phase Four-Switch Matrix AC-DC Converter with Power Factor Correction 93 5.1 Steady-State Analysis 93 5.1.1 Circuit Operation Principle 93 5.1.2 Derivation of Static Gain 99 5.2 Design Considerations 101 5.3 Control Strategy 105 5.4 Simulation and Experimental Results 107 5.5 Summary 114 Chapter 6 Conclusions and Future Work 116 6-1 Conclusions 116 6-2 Recommendations for Future Work 119 References 121 Biography of the Author 133

    [1] B. K. Bose, “Energy, environment, and advances in power electronics,” IEEE Trans. Power Electron., vol. 15, no. 4, pp. 688–701, Jul. 2000.
    [2] S. R. Bull, “Renewable energy today and tomorrow,” Proc. the IEEE, vol. 89, no. 8, pp. 1216–1226, Aug. 2001.
    [3] Y. Xue, L. Chang, S. B. Kjær, J. Bordonau , and T. Shimzu, “Topologies of single-phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305–1314, Sept. 2004.
    [4] M. Z. Jacobson, “Review of solutions to global warming, air pollution, and energy security,” Energy and Environmental Science, vol. 2, no. 2, pp. 148–173, 2009.
    [5] F. Blaabjerg, Z. Chen, and S. B. Kjaer, “Power electronics as efficient interface in dispersed power generation systems,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1184–1194, Sept. 2004.
    [6] E. Koutroulis, D. Kolokotsa, A. Potirakis, and K. Kalaitakis, “Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms,” Solar Energy, vol. 80, no. 9, pp. 1072–1088, Sep. 2006.
    [7] F. Valenciaga and P. F. Puleston, “Supervisor control for a stand-alone hybrid generation system using wind and photovoltaic energy,” IEEE Trans. Energy Convers., vol. 20, no. 2, pp. 398–405, Jun. 2005.
    [8] J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galvan, R. C. P. Guisado, Ma. A. M. Prats, J. I. Leon, and N. Moreno-Alfonso, “Power-electronic systems for the grid integration of renewable energy sources: A survey,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1002–1016, Jun. 2006.
    [9] F. Blaabjerg, R. Teodorescu, M. Liserre, and A. V. Timbus, “Overview of control and grid synchronization for distributed power generation systems,” IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1398–1409, Oct. 2006.
    [10] Q. Li and P. Wolfs, “A review of the single phase photovoltaic module integrated converter topologies with three different dc link configure- tions,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1320–1333, May 2008.
    [11] T. Esram and P. L. Chapman, “Comparison of photovoltaic array maximum power point tracking techniques,” IEEE Trans. Energy Convers., vol. 22, no. 2, pp. 439–449, Jun. 2007.
    [12] S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, “A review of single-phase grid-connected inverters for photovoltaic modules,” IEEE Trans. Ind. Appl., vol. 41, no. 5, pp. 1292–1306, Sep./Oct. 2005.
    [13] E. Roman, R. Alonso, P. Ibanez, S. Elorduizapatarietxe, and D. Goitia, “Intelligent PV module for grid-connected PV systems,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1066–1073, Aug. 2006.
    [14] W. Li and X. He, “Review of nonisolated high-step-up dc/dc converters in photovoltaic grid-connected applications,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1239–1250, Apr. 2011.
    [15] M. W. Ellis, M. R. Von Spakovsky, and D. J. Nelson, “Fuel cell systems: efficient, flexible energy conversion for the 21st century,” Proc. the IEEE, vol. 89, no. 12, pp. 1808–1817, Dec. 2001.
    [16] K. Rajashekara, “Hybrid fuel-cell strategies for clean power generation,” IEEE Trans. Ind. Appl., vol. 41, no. 3, pp. 682–689, May/Jun. 2005.
    [17] M. C. Pera, D. Candusso, D. Hissel, and J. M. Kauffmann, “Power generation by fuel cells,” IEEE Ind. Electr. Mag., vol. 1, no. 3, pp. 28-37, 2007.
    [18] T. Shimizu, M. Hirakata, T. Kamezawa, and H. Watanabe, “Generation control circuit for photovoltaic modules,” IEEE Trans. Power Electron., vol. 16, no. 3, pp. 293–300, May 2001.
    [19] G. R. Walker and P. C. Sernia, “Cascaded dc-dc converter connection of photovoltaic modules,” IEEE Trans. Power Electron., vol. 19, no. 4, pp. 1130–1139, Jul. 2004.
    [20] G. K. Andersen, C. Klumpner, S. B. Kjaer, and F. Blaabjerg, “A new green power inverter for fuel cells,” in Pro. IEEE PESC, 2002, pp. 727–733.
    [21] J. Wang, F. Z. Peng, J. Anderson, A. Joseph, and R. Buffenbarger, “Low cost fuel converter system for residential power generation,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1315–1322, Sep. 2004.
    [22] M. C. Alonso-Garcίa, J. M. Ruiz, and F. Chenlo, “Experimental study of mismatch and shading effects in the I–V characteristic of a photovoltaic module,” Sol. Energy Mater. Sol. Cells., vol. 90, no. 3, pp. 329–340, Feb. 2006.
    [23] H. Patel and V. Agarwal, “MATLAB-based modeling to study the effects of partial shading on PV array characteristics,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 302–310, Mar. 2008.
    [24] T. F. Wu, C. H. Chang, L. C. Lin, and C. L. Kuo, “Power loss comparison of single- and two-stage grid-connected photovoltaic systems,” IEEE Trans. Energy Convers., vol. 26, no. 2, pp. 707–715, Jun. 2011.
    [25] Q. Zhao and F. C. Lee, “High-efficiency, high step-up dc-dc converters,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 65–73, Jan. 2003.
    [26] L. S. Yang, T. J. Liang, and J. F. Chen, “Transformerless dc-dc converters with high step-up voltage gain,” IEEE Trans. Ind. Electron., vol. 56, no. 8, pp. 3144–3152, Aug. 2009.
    [27] M. Yamanaka, M. Sakane, and K. Hirachi, “Practical development of a high-performance UPS with a novel buck-boost chopper circuit,” in Proc. INTELEC, 2000, pp. 632– 637.
    [28] W. Chen, Z. Lu, X. Zhang, and S. Ye, “A novel ZVS step-up push-pull type isolated LLC series resonant dc-dc converter for UPS systems and its topology variations,” in Proc. IEEE APEC, 2008, pp. 1073–1078.
    [29] W. Chen, Z. Lu, X. Zhang, and S. Ye, “A novel ZVS step-up push-pull type isolated LLC series resonant dc-dc converter for UPS systems and its topology variations,” in Proc. IEEE ISIE, 2010, pp. 602–607.
    [30] IEEE Recommended Practices and Requirements for Harmonics Control in Electric Power Systems, IEEE Std. 519, 1992.
    [31] Draft-Revision of Publication IEC 555-2: Harmonics, Equipment for Connection to the Public Low Voltage Supply System, IEC SC 77A, 1990.
    [32] Electromagnetic Compatibility (EMC)-Part 3: Limits-Section 2: Limits for Harmonic Current Emissions (Equipment Input Current < 16A Per Phase), IEC1000-3-2 Doc, 1995.
    [33] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of single-phase improved power quality ac-dc converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962–981, Oct. 2003.
    [34] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749–755, May 2003.
    [35] G. Moschopoulos and P. Jain, “Single-phase single-stage power-factor-corrected converter topologies,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 23–25, Feb. 2005.
    [36] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of three-phase improved power quality ac-dc converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641–660, Jun. 2004.
    [37] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics, 2nd ed. New York: Wiley, 1995, pp. 172-178.
    [38] E. T. Calkin and B.H. Hamilton, “A conceptually new approach for regulated dc to dc converters employing transistor switches and pulsewidth control,” IEEE Trans. Ind. Appl., vol. IA-12, no. 4, pp. 369–377, Jul/Aug. 1976.
    [39] H. Hion, T. Hatakeyma, and M. Nakaoka, “Resonant PWM linked dc-dc converter using parasitic impedances of high-voltage transformer and its applications to X-ray generator,” in Proc. IEEE PESC, 1988, pp. 1104–1109.
    [40] V. Garcia, M. Rico, J. Sebastian, M. M. Hernando, and J. Uceda, “An optimized dc-to-dc converter topology for high-voltage pulse-load applications,” in Proc. IEEE PESC, 1994, pp. 1413–1421.
    [41] S. Ohtsu, T. Yamashita, K. Yamamoto, and T. Sugiura, “Stability in high-output- voltage push-pull current-fed converters,” IEEE Trans. Power Electron., vol. 8, no. 2, pp. 135–139, Apr. 1993.
    [42] A. L. Rabello, M. A. Co, D. S. L. Simonetti, and J. L. F. Vieira, “An isolated dc-dc boost converter using two cascade control loops,” in Proc. IEEE ISIE, 1997, vol. 2, pp. 452–456.
    [43] Y. Jang and M. M. Jovanovic, “New two-inductor boost converter with auxiliary transformer,” IEEE Trans. Power Electron., vol. 19, no. 1, pp. 169–175, Jan. 2004.
    [44] S. Jalbrzykowski and Tadeusz, “Current-fed resonant full-bridge boost dc/ac/dc converter,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1198–1205, Mar. 2008.
    [45] E. H. Kim and B. H. Kwon,, “High step-up resonant push-pull converter with high efficiency,” IET Power Electron., vol. 2, no. 1, pp. 79–89, Jan. 2009.
    [46] J. M. Kwon, E. H. Kim, B. H. Kwon, and K. H. Nam, “High-efficiency fuel cell power conditioning system with input current ripple reduction,” IEEE Trans. Ind. Electron., vol. 56, no. 3, pp. 826–834, Mar. 2009.
    [47] C. S. Leu and M. H. Li, “A novel current-fed boost converter with ripple reduction for high-voltage conversion applications,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 2018–2023, Jun. 2010.
    [48] R. Y. Chen, R. L. Lin, T. J. Liang, J. F. Chen, and K. C. Tseng, “Current-fed full-bridge boost converter with zero current switching for high voltage applications,” in Conf. Rec. IEEE IAS Annu. Meeting, 2005, pp. 2000–2006.
    [49] R. Y. Chen, T. J. Liang, J. F. Chen, R. L. Lin, and K. C. Tseng, “Study and implementation of a current-fed full-bridge boost dc-dc converter with zero-current switching for high-voltage applications,” IEEE Trans. Ind. Appl., vol. 44, no. 4, pp. 1218–1226, Jul/Aug. 2008.
    [50] W. C. Chen, T. J. Liang, L. S. Yang, and J. F. Chen, “Current-fed dc-dc converter with ZCS for high voltage applications,” in Proc. IEEE IPEC, 2010, pp. 58–62.
    [51] B. R. Lin, J. Y. Dong, and J. J. Chen, “Analysis and implementation of a ZVS/ZCS dc-dc switching converter with voltage step-up,” IEEE Trans. Ind. Electron., vol. 58, no. 7, pp. 2962–2971, Jul. 2011.
    [52] S. K. Han, H. K. Yoon, G. W. Moon, M. J. Youn, Y. H. Kim, and K. H. Lee, “A new active clamping zero-voltage switching PWM current-fed half-bridge converter,” IEEE Trans. Power Electron., vol. 20, no. 6, pp. 1271–1279, Nov. 2005.
    [53] S. J. Jang, C. Y. Won, B. K. Lee, and J. Hur, “Fuel cell generation system with a new active clamping current-fed half-bridge converter ,” IEEE Trans. Energy Convers., vol. 22, no. 2, pp. 332–340, Jun. 2007.
    [54] J. M. Kwon and B. H. Kwon, “High step-up active-clamp converter with input-current doubler and output-voltage doubler for fuel cell power systems,” IEEE Trans. Power Electron., vol. 24, no. 1, pp. 108–115, Jan. 2009.
    [55] R. J. Wai, C. Y. Lin, and Y. R. Chang, “High step-up bidirectional isolated converter with two input power sources,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2629–2643, Jul. 2009.
    [56] R. J. Wai, C. Y. Lin, R. Y. Duan, and Y. R. Chang, “High-efficiency dc-dc converter with high voltage gain and reduced switch stress,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 354–364, Feb. 2007.
    [57] T. F. Wu, Y. S. Lai, J. C. Hung, and Y. M. Chen, “Boost converter with coupled inductors and buck-boost type of active clamp,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 154–162, Jan. 2008.
    [58] R. J. Wai and R. Y. Duan, “High step-up converter with coupled-inductor,” IEEE Trans. Power Electron., vol. 20, no. 5, pp. 1025–1035, Sep. 2005.
    [59] S. S. Lee, S. W. Rhee, and G. W. Moon, “Coupled inductor incorporated boost half-bridge converter with wide ZVS operation range,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2505–2512, Jul. 2009.
    [60] W. Yu, C. Hutchens, J. S. Lai, J. Zhang, G. Lisi, A. Djabbari, G. Smith, and T. Hegarty, “High efficiency converter with charge pump and coupled inductor for wide input photovoltaic AC module applications,” in Proc. IEEE ECCE, 2009, pp. 3895–3900.
    [61] S. V. Araujo, R. P. Torrico-Bascope, and G. V. Torrico-Bascope, “Highly efficient high step-up converter for fuel-cell power processing based on three-state commutation cell,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 1987–1997, Jun. 2010.
    [62] S. K. Changchien, T. J. Liang, J. F. Chen, and L. S. Yang, “Novel high step-up dc-dc converter for fuel cell energy conversion system,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 2007–2017, Jun. 2010.
    [63] K. C. Tseng and T. J. Liang, “Novel high-efficiency step-up converter,” IEE Proc. -Electr. Power Appl., vol. 151, no. 2, pp. 182–190, Mar. 2004.
    [64] K. C. Tseng and T. J. Liang, “Analysis of integrated boost-flyback step-up converter,” IEE Proc. -Electr. Power Appl., vol. 152, no. 2, pp. 217–225, Mar. 2005.
    [65] L. J. Shu, T. J. Liang, L. S. Yang, R. L. Lin, “Transformerless high step-up dc-dc converter using cascade technique,” in Proc. IEEE IPEC, 2010, pp. 63–67.
    [66] O. C. Mak, Y. C. Wong, and A. Ioinovici, “Step-up dc power supply based on a switched-capacitor circuit,” IEEE Trans. Ind. Electron., vol. 42, no. 1, pp. 90–97, Feb. 1995.
    [67] D. Zhou, A. Pietkiewicz, and S. Cuk, “A three-switch high-voltage converter,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 177–183, Jan. 1999.
    [68] L. Huber and M. M. Jovanovic, “A dseign approach for server power supplies for networking applications,” in IEEE APEC, 2000, pp. 1163–1169.
    [69] O. Abutbul, A. Gherlitz, Y. Berkovich, and A. Ioinovici, “Step-up switching-mode converter with high voltage gain using a switched-capacitor circuit,” IEEE Trans. Circuits and Syst. I: Fundam. Theory Appl., vol. 50, no. 8, pp. 1098–1102, Aug. 2003.
    [70] J. C. Rosas-Caro, J. M. Ramirez, F. Z. Peng, and A. Valderrabano, “A dc-dc multilevel boost converter,” IET Power Electron., vol. 3, no. 1, pp. 129–137, Jan. 2010.
    [71] F. L. Luo and H. Ye, “Positive output multiple-lift push-pull switched-capacitor Luo-converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 594–602, Jun. 2004.
    [72] F. L. Luo and H. Ye, “Positive output cascade boost converters,” IEE Proc. -Electr. Power appl. Appl., vol. 151, no. 5, pp. 590–606, Sept. 2004.
    [73] J. Leyva-Ramos, M. G. Ortiz-Lopez, L. H. Diaz-Saldierna, and J. A. Morales-Saldana, “Switching regulator using a quadratic boost converter for wide dc conversion rations,” IET Power Electron., vol. 2, no. 5, pp. 605–613, Sept. 2009.
    [74] B. Axelrod, Y. Berkovich, and A. Ioinovici, “Switched-capacitor/switched-indu- ctor structures for getting transformerless hybrid dc-dc PWM converters,” IEEE Trans. Circuits Syst. I: Regular Papers, vol. 55, no. 2, pp. 687–696, Mar. 2008.
    [75] Y. Berkovich, B. Axelrod, and A. Shenkman, “A novel diode-capacitor voltage multiplier for increasing the voltage of photovoltaic cells,” in Proc. COMPEL, 2008, pp. 1–5.
    [76] M. Prudente, L. L. Pfitscher, G. Emmendoerfer, E. F. Romaneli, and R. Gules, “Voltage multiplier cells applied to non-Isolated dc-dc converters,” IEEE Trans. Power Electron., vol. 23, no. 2, pp. 871–887, Mar. 2008.
    [77] E. Everhart and P. Lorrain, ”The Cockcroft-Walton voltage multiplying circuit,” Review of Scientific Instruments, vol. 24, no. 3, pp. 221–226, Mar. 1953.
    [78] N. Mariun, D. Ismail, K. Anayet, N. Khan, and M. Amran, “Simulation, design and construction of high voltage dc power supply at 15 kV output using voltage multiplier circuits,” American Journal of Applied Sciences, vol. 13, no. 12, pp. 2178–2183, Dec. 2006.
    [79] G. Reinhold, K. Truempy, and J. Bill, “The symmetrical cascade rectifier an accelerator power supply in the megavolt and milliampere range,” IEEE Trans. Nuclear Science, vol. 12, no. 3, pp. 288–292, Jun. 1965.
    [80] G. Reinhold and K. Truempy, “High voltage dc power supplies for beam injectors,” IEEE Trans. Nuclear Science, vol. 16, no. 3, pp. 117–118, Jun. 1969.
    [81] G. Reinhold, K. Trumpy, and R. Gleyvod, ”High power Cockcroft-Walton generator,” IEEE Trans. Nuclear Science, vol. 18, no. 3, pp. 92–93, Jun. 1971.
    [82] G. Reinhold and R. Gleyvod, “Megawatt HV dc power supplies,” IEEE Trans. Nuclear Science, vol. 22, no. 3, pp. 1289–1292, Jun. 1975.
    [83] M. M. Weiner, “Analysis of Cockcroft-Walton voltage multipliers with an arbitrary number of stages,” Rev. Sci. Instrum., vol. 40, no. 2, pp. 300–333, Feb. 1969.
    [84] E. Kuffel and W. S. Zaengl, High Voltage Engineering Fundamentals. New York: Pergamon International Library, 1984, ch. 2.
    [85] M. Khalifa, “High-voltage engineering, theory and practice,” in Electrical Engineering and Electronics, A series of Reference Books and Textbooks, vol. 63. New York: Marcel Decker, Mar. 1990, ch. 6.
    [86] J. Tanaka and I. Yuzurihara, “The high frequency drive of a new multi-stage rectifier circuit,” in Proc. IEEE PESC, 1988, pp. 1031–1037.
    [87] S. D. Johnson, A. F. Witulski, and R. W. Erickson, “Comparison of resonant topologies in high-voltage dc applications,” IEEE Trans. Aerosp. Electron. Syst., vol. 24, no. 3, pp. 263–274, May 1988.
    [88] S. M. Sbenaty and C. A. Ventrice, “High voltage dc shifted RF switch-mode power supply system design for gas lasers excitation,” in Proc. IEEE APEC, 1991, pp. 1031–1037.
    [89] M. D. Bellar, E. H. Watanabe, and A. C. Mesquita, “Analysis of the dynamic and steady-state performance of Cockcroft-Walton cascade rectifiers,” IEEE Trans. Power Electron., vol. 7, no. 3, pp. 526–534, Jul. 1992.
    [90] C. Rivetta, G. Foster, and S. Hansen, “HV resonant converter for photomultiplier tube bases,” in Proc. IEEE NSSMIC, 1992, pp. 438–440.
    [91] P. G. Maranesi, F. Raina, M. Riva, and G. Volpi, “Accurate and nimble forecast of the HV source dynamics,” in Proc. IEEE PESC, 2000, pp. 539–543.
    [92] F. Belloni, P. Maranesi, and M. Riva, “Parameters optimization for improved dynamics of voltage multipliers for space,” in Proc. IEEE PESC, 2004, pp. 439–443.
    [93] E. Chu, L. Gamage, M. Ishitobi, E. Hiraki, and M. Nakaoka, “Improved transient and steady-state performance of series resonant ZCS high-frequency inverter-coupled voltage multiplier converter with dual mode PFM control scheme,” Electrical Engineering in Japan (English translation of Denki Gakkai Ronbunshi), vol. 149, no. 4, pp. 60–72, Dec. 2004.
    [94] H. J. Chung, “A CW CO2 laser using a high-voltage dc-dc converter with resonant inverter and Cockcroft-Walton multiplier,” Optics and Laser Technology, vol. 38, no. 8, pp. 577–584, Nov. 2006.
    [95] S. Iqbal, R. Besar, and C. Venkataseshaiah, “A novel control scheme for voltage multiplier based X-ray power supply,” in Proc. IEEE PECON, 2008, pp. 1456-1460.
    [96] L. Malesani and R. Piovan, “Modeling and control design for a very low-frequency high-voltage test system,” IEEE Trans. Power Electron., vol. 25, no. 4, pp. 1068–1077, Apr. 2010.
    [97] J. Sun, X. Ding, M. Nakaoka, and H. Takano, “Series resonant ZCS-PFM dc-dc converter with multistage rectified voltage multiplier and dual-mode PFM control scheme for medical-use high-voltage X-ray power generator,” IEE Proc. -Electr. Power appl. Appl., vol. 147, no. 6, pp. 527–534, Nov. 2000.
    [98] K. Ogura, E. Chu, M. Ishitobi, M. Nakamura, and M. Nakaoa, “Inductor snubber-assisted series resonant ZCS-PFM high frequency inverter link dc-dc converter with voltage multiplier,” in Proc. Power Convers. Conf., PCC 2002, pp. 110–114.
    [99] N. A. Rahim and A. M. Omar, ”Three-phase single-stage high-voltage dc converter,” IEE Proc. Generation, Transmission and Distribution, vol. 149, no. 5, pp. 505–509, Sep. 2002.
    [100] K. S. Muhammad, A. M. Omar, and S. Mekhilef, “Digital control of high dc voltage converter based on Cockcroft Walton voltage multiplier circuit,” in Proc. IEEE TENCON, 2005, pp. 1–4.
    [101] S. Mekhilef, A. M. Omar, and K. S. Muhammad, ” Single-phase single-stage high dc voltage multiplier converter,” in Proc. IEEE ICIT, 2005, pp. 846–850.
    [102] K. S. Muhammad, A. M. Omar, and S. Mekhilef, ”An improved topology of digitally-controlled single-phase single-stage high dc voltage converter,” in Proc. IEEE PESC, 2006, pp. 1–5.
    [103] A. Shenkman, Y. Berkovich, and B. Axelrod, “The transformerless ac-dc and dc-dc converters with a diode-capacitor voltage multiplier,” in Proc. IEEE Power Tech Conf., PTC 2003.
    [104] A. Shenkman, Y. Berkovich, and B. Axelrod, “Novel ac-dc and dc-dc converters with a diode-capacitor multiplier,” IEEE Trans. Aerosp. Electron. Syst., vol. 40, no. 4, pp. 1286–1293, Oct. 2004.
    [105] Y. Berkovich, A. Shenkman, B. Axelrod, and G. Golan, “Structures of transformerless step-up and step-down controlled rectifiers,” IET Power Electron., vol. 1, no. 2, pp. 245–254, Jun. 2008.
    [106] J. F. Chen, R. Y. Chen, and T. J. Liang, “Study and implementation of a single-stage current-fed boost PFC converter with ZCS for high voltage applications,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 379–386, Jan. 2008.
    [107] S. Iqbal , “A three-phase symmetrical multistage voltage multiplier,” IEEE Power Electron. Letters, vol. 3, no. 1, pp. 30–33, Mar. 2005.
    [108] F. Hwang, S. Ying, and S. H. Jayaram, “Low-ripple compact high-voltage dc power supply,” IEEE Tran. Ind. Appl., vol. 42, no. 5, pp. 1139–1145, Sept./Oct. 2006.
    [109] S. Iqbal and R. Besar, “A bipolar Cockcroft-Walton voltage multiplier for gas lasers,” American Journal of Applied Sciences, vol. 4, no. 10, pp. 793–799, 2007.
    [110] S. Iqbal, R. Besar, and C. Venkataseshiah, “A low ripple voltage multiplier for X-ray power supply ,” in Proc. IEEE PECON, 2008, pp. 1451–1455.
    [111] S. Iqbal, R. Besar, and C. Venkataseshaiah, “Single/three-phase symmetrical bipolar voltage multipliers for X-ray power supply,” in Proc. ICEE, 2008, pp. 1–6.
    [112] S. Iqbal, G. K. Singh, and R. A. Besar, “Dual-mode input voltage modulation control scheme for voltage multiplier based X-ray power supply,” IEEE Trans. Power Electron., vol. 23, no. 2, pp. 1003–1008, Mar. 2008.
    [113] M. Julian, “Cockroft-Walton optimum design guide V2.0,” 10 Aug. 2005, Internet paper, available: http://www.blazelabs.com/CWdesign.pdf, accessed on 30/11/2006.
    [114] I. C. Kobougias and E. G. Tatakis, “Optimal design of a half-wave Cockcroft-Walton voltage multiplier with minimum total capacitance,” in Proc. IEEE PESC, 2008, pp. 1104–1109.
    [115] I. C. Kobougias and E. G. Tatakis, “Optimal design of a half-wave Cockcroft-Walton voltage multiplier with minimum total capacitance,” IEEE Trans. Power Electron., vol. 25, no. 9, pp. 2460–2468, Jan. 2010.
    [116] L. Malesani and R. Piovan, “Theoretical performance of the capacitor-diode voltage multiplier fed by a current source,” IEEE Trans. Power Electron., vol. 8, no. 2, pp. 147–155, Apr. 1993.
    [117] H. Van Der Broeck, “Analysis of a current fed voltage multiplier bridge for high voltage applications,” in Proc. IEEE PESC, 2002, pp. 1919–1924.
    [118] Infineon Technologies, “ICE1PCS01-standalone power factor correction controller in continuous conduction mode,” Preliminary datasheet, V1.1, May 2003.
    [119] Z. Lai and K. M. Smedley, “A family of continuous-conduction-mode power-factor-correction controllers based on the general pulse-width modulator,” IEEE Trans. Power Electron., vol. 13, no. 3, pp. 501–510, May 1998.

    QR CODE