簡易檢索 / 詳目顯示

研究生: 陳維凱
Wei-Kai Chen
論文名稱: 雙層通風窗戶之數值與實驗整合研究
An Integrated CFD and Experimental Analysis on Double Skin Windows
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 李基禎
Ji-Jen Lee
陳呈芳
Cheng-Fang Chen
郭鴻森
Hong-Sen Kou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 128
中文關鍵詞: 太陽能雙層帷幕熱浮力
外文關鍵詞: Solar Energy, Double Skin Façades, Thermal Buoyancy
相關次數: 點閱:1129下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

替代能源被視為解決石油耗竭的主要方法,而各種能源生產的過程多半存在著環境汙染的問題,人類使用能源的方式多是將自然資源轉換成電能,再藉由電驅動機械運作,於轉換中必有相當的能量損失。而本文旨在探討一次能源(Primary Energy)的使用,其原理係將太陽能直接轉換成流體的動能,以直接驅動流體改善建築物內的空氣循環,過程中不但不存在汙染的問題,且無須電源消耗的成本。首先參考歐洲商辦大樓常見的雙層帷幕結構概念以設計出一組適用於家庭住宅的雙層窗戶原型,可獨立安裝於民宅內作環境通風。研究開始先以實驗的方式測試雙層窗戶能否在鹵素燈的照射下驅動室內外的空氣流動,並以線香觀察氣流方向與理論是否相符合,之後再以CFD模擬軟體可視化其細部流場,相互印證雙層窗戶在吸收太陽能後使腔體內熱空氣上升的現象。了解雙層窗戶原型之整體流動現象後可發現影響其排氣性能的重要參數,本研究依據熱流理論提出三項設計以提升其流量輸出,改良方法依序為窗框的幾何改良、出口導板的設計以及聚光元件的安裝,期望以導正氣流及增加熱能吸收的方式修正系統整體的工作性能。
實驗中使用鹵素燈模擬陽光的輻射加熱,以提供由兩片透明材質組成的雙層窗戶系統所需的熱浮力,驅動上下游氣體而達到室內通風的效果。測試結果可見面積1m × 0.5 m氣腔厚度0.2 m的雙層窗戶在500W的鹵素燈照射下可輸出0.36m/s的氣流,再藉由數值分析模擬流量為24.8 cfm。雖後改良設計被分別套用在雙層窗戶原型上,實驗可見相較於原型窗戶分別可提升5%、 45% 及15%的流速,且在數值分析後皆可見兩成的流量改善。
雙層窗戶的排氣與驅動方向相互垂直,故需要導正氣流的結構減少流道中因轉向而碰撞壁面的動力散失,而導正氣流時須考量原型氣流的進出口角度,此與環境整體溫度與室內外溫差有關,也同時影響著氣流的速度與流量,實測顯示雙層窗戶的氣流在整體環境溫度愈高時流速輸出愈高,還有在室內溫度高於室外的條件下,室內氣體的膨脹也有助於雙層窗戶的流速提升,這些現象皆於數值分析的結果得到應證。本文最後應用大尺度渦流法計算暫態時的流道現象,觀察到雙層窗戶內的氣流的溫度與速度相互震盪的現象,再次地印證其能量轉換的機制,也更加確定流道內的紊流流場型態,此有助於未來更深入探討本系統應用於實際建築案例時的性能分析研究。


Resulting from the constant decline in natural resource, the alternative way to reduce the costs in our daily life is urgent to be found in the near future. Based on the ancient technique of solar chimney since roman times, the double-skin façade is simply composed of two large glass panels in purpose of daylighting and also natural ventilation in the daytime. Double-skin façade is generally installed on the exterior side of buildings as function as the window, so there is always a huge amount of passive solar energy that the façade would receive to induce the airflow every sunny day. Therefore this research proposes a double-skin window (1m × 0.5 m × 0.2 m in size) for the domestically residential usage and attempts to improve the volume flow rate inside the cavity between the panels. In this study, the numerical analyses and experimental measurements are utilized cooperatively to investigate the characteristics of flow field inside the double-skin window. Firstly, the prototype of original design is manufactured for testing its ventilating effect and determining the appropriate boundary conditions for numerical simulation. Then, the flow calculation is performed for validating the numerical model and visualizing the detailed flow patterns inside the double-skin window.
Later, based on these flow observations and fluid dynamic theory, several improving alternatives are proposed for enhancing its ventilation performance. These modifications considered here include the frame geometry design, the installation of outlet guide plate, and the solar energy collection system. Next, the corresponding numerical simulations on these modified designs are conducted for realizing their improving effects. Also, these redesigned prototypes are fabricated and tested for confirming the actual performance enhancements. Consequently, from the experimental results, a 0.36m/s air velocity is recorded for the original prototype under the 500W solar power input. And the frame redesign, the guiding plate addition, and the energy collecting system generate the growths on the ventilating air velocities by 5%, 45%, and 15%, respectively. In addition, the numerical outcomes report a 24.8 CFM flow rate for the original design, and 20% improvement on the volume flow rate for both the frame geometry design and the installation of outlet guide plate. In conclusions, this integrated CFD and experimental work successfully establishes a systematic scheme for designing and evaluating the ventilation effect for the double-skin window. Also, several modifications are raised to attain significant ventilating improvement for its future applications.

目錄 摘要 I Abstract III 致謝 V 目錄 VI 圖索引 IX 表索引 XII 符號索引 XIV 第一章 緒論 1 1.1 前言 1 1.2 雙層帷幕應用概論 2 1.3 空氣品質與環境舒適度 13 1.4 文獻回顧 19 1.5 研究方法 23 第二章 物理模型與數值分析 30 2.1 原始模型與實驗方法 30 2.2 實驗設備 38 2.3 熱流理論與統御方程式 41 2.3.1 熱流統御方程式 43 2.3.2 熱傳遞原理與浮力方程式 46 2.4 數值計算理論 47 2.5 模擬數值分析與邊界條件設定 50 2.5.1 數值邊界條件設定 53 2.5.2 數值求解流程 55 第三章 雙層窗戶之修正設計 58 3.1 原型實驗配置與網格驗證 58 3.2輻射能量數值方法 68 3.2.1 熱輻射模型的選擇 68 3.2.2 P-1 輻射模型 71 3.2.3 太陽負載模型(Solar Load Model) 74 3.3 原型雙層窗戶之模擬結果 75 3.4 改良設計 81 3.4.1窗框幾何設計 81 3.4.2 出口導板結構 90 3.4.3 聚光元件系統 96 3.5 能量累積現象探討 102 第四章 出口導流板之應用及其外形參數探討 108 4.1 導流板幾何外形的設計理論 108 4.1.1 自然風的基本定義 110 4.1.2 邊界條件設定 114 4.2 數值分析與模擬結果 118 第五章 結論 124 參考文獻 127

參考文獻
[1] Le Corbusier, "The Fundamental Material of Modern Architecture," West 86th, Volume 19, Issue 2, Page 282-308, 2012.
[2] Fanger, P. O., "Introduction of the Olf and Decipol Units to Quantify Air Pollution Perceived by Humans Indoors and Outdoors," Energy and Buildings,1988.
[3] Gratia, E., "Natural Ventilation in a Double-Skin Façades," Energy and Building, 36(2): 137-146, 2004.
[4] Neveen, H. and Underwood, C., "CFD Supported Modeling of Double Skin Façade in Hot Arid Climates," Ninth International IBPSA Conference, 365-372, 2005, Montré al.
[5] Manz, H., "Simulation of Building with Double-Skin facades," Energy and Building, 37(11):1114-1121, 2005.
[6] Ding, W., "Natural Ventilation Performance of a Double-Skin Façade with a Solar Chimney," Energy and Buildings, 2004.
[7] Safer, N., "Modeling of the Double-Skin Façade for Building Energy Simulation Radiations: Radiative and Convective Heat Transfer," Energy and Buildings, 2005.
[8] Patankar, S. V. and Spalding, D. B., "A Calculation Procedure for Heat Mass and Momentum Transfer in Three-Dimensional Parabolic Flows," International Journal of Heat Mass Transfer, Vol. 15, pp. 1787-1806, 1972.
[9] Launder, B. E. and Spalding, D. B., "Lectures in Mathematical. Models of Turbulence," Academic Press, 1972, London, England.
[10] 王俊雄,”房車內乘客舒適度之數值模擬”, 國立台灣科技大學機械工程系碩士論文,2006年。
[11] 鄭鴻基,”力型垂直軸風力機之實驗研究”, 國立台灣科技大學機械工程系碩士論文,2012年。

QR CODE