簡易檢索 / 詳目顯示

研究生: 顏朝鋒
Chao-Fong Yan
論文名稱: IED群組設定於微電網保護管理系統之應用
Apply Group Setting of IED in Microgrid Protection Management Systems
指導教授: 辜志承
Jyh-Cherng Gu
口試委員: 蕭弘清
Horng-Ching Hsiao
楊明達
Ming-Ta Yang
黃培華
Pei-Hwa Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 112
中文關鍵詞: 微電網IEC 61850智慧型電子裝置監控平台保護管理系統
外文關鍵詞: Microgrid, IEC 61850, IED, SCADA, PMS
相關次數: 點閱:477下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

微電網內建置之分散式電源(DG)導致電力潮流或故障電流路徑與方向多元化,使得傳統輻射型系統之過電流保護方式已無法滿足需求。本論文整合智慧型電子裝置(IED)、監控系統(SCADA)及IEC 61850通訊架構,建立一套適用於微電網之保護管理系統(PMS)。首先,利用現場既設IED,用以量測DG之發電、饋線負載之用電及開關狀態等系統資訊,再透過IEC 61850標準通訊協定,將訊息傳回後端之SCADA監控系統平台中之保護管理系統。保護管理系統主要係透過IED邏輯規劃來協調各IED間之跳脫順序,並應用IEC 61850所定義之GOOSE功能,作為各IED間傳遞閉鎖資訊之媒介。此外為因應微電網運轉於孤島模式或併網模式下之電流差異性,PMS導入IED之保護群組設定(Group Setting)功能,使其具備自我調適能力(Adaptivity)。基本上,只要偵測到微電網之拓撲結構改變,PMS即重新計算短路故障電流,分析所得即為更新IED保護群組設定之依據。因此,只要故障發生IED皆可迅速隔離故障。本論文最後應用Matlab/Simulink與Elipse Power Studio進行模擬分析,驗證本研究所提出保護機制的可行性。


There are number of Distributed Generations (DGs) installed in microgrid, which may diverse the path or direction of load current or fault current. Such that the overcurrent protection scheme for traditional radial type distribution system no longer be useful for microgrid. To find out the solution, a microgrid protection management system (PMS) which integrated intelligent electronic device (IED), supervisory control and data acquisition (SCADA) with IEC 61850 communication protocol is proposed in this thesis. First of all, by aid of existed Intelligent Electronic Devices (IEDs) the generation of DG, loading of feeder, and status of circuit braker can be measured. Those system informations were sent back to PMS through IEC 61850. Then, PMS perform logic programming for each IED to coordinate their tripping sequence. Furthermore, the GOOSE message which is defined in IEC 61850 is used as the media among IEDs. Moreover, because of the difference of the fault current in microgrid between in grid-connected mode and in islanding mode, the group setting feature is applicable to resolve this issue and it makes PMS more adaptive. Basically, PMS will recalculate the fault current whenever the topology of microgrid is changed. The results are used to update the group setting of IED. Hence, IED always can quickly isolate the fault as far as the fault happened. Finally, the Matlab/Simulink and Elipse Power Studio are introduced to simulate and varify the proposed method.

摘要 I Abstract III 致謝 V 目錄 VII 圖目錄 XI 表目錄 XV 第一章、緒論 1 1.1 研究背景與動機 1 1.2 研究方法 3 1.3 論文架構 4 第二章、微電網系統架構 7 2.1 前言 7 2.2 微電網發展現況 7 2.2.1 美國 7 2.2.2 歐盟 9 2.2.3 日本 10 2.2.4 中國 10 2.2.5 台灣 11 2.3 微電網再生能源標準 14 2.3.1 美國 14 2.3.2 德國 16 2.3.3 日本 17 2.3.4 中國 18 2.3.5 台灣 21 2.4 分散式電源 23 2.4.1 柴油發電機 23 2.4.2 微渦輪發電機 24 2.4.3 太陽能發電系統 24 2.4.4 風力發電系統 25 2.4.5 電池儲能裝置 26 2.5 本章小結 27 第三章、核研所微電網系統 29 3.1 前言 29 3.2 微電網系統架構 29 3.3 微電網系統參數 30 3.4 微電網故障試驗 33 3.4.1 故障點與量測點設置 34 3.4.2 試驗情境 38 3.4.3 試驗結果分析 39 3.5 微電網系統模型 46 3.6 本章小結 47 第四章、微電網故障重構分析 49 4.1 前言 49 4.2 微電網重構概念 49 4.3 微電網拓撲結構分析 50 4.4 微電網重構之數學模型 53 4.4.1 目標函數 54 4.4.2 限制條件 55 4.5 本章小結 56 第五章、微電網保護管理系統 57 5.1 前言 57 5.2 微電網保護架構 57 5.2.1 智慧型電子裝置 58 5.2.2 IEC 61850通訊協定 62 5.2.3 NTP時間同步協定 69 5.2.4 監控系統 71 5.3 保護管理系統概念 74 5.4 IED規劃 75 5.4.1 電驛設定 75 5.4.2 保護邏輯 76 5.4.3 切換電驛群組設定 78 5.5 監控平台建置 80 5.6 保護管理系統建置 85 5.6.1 系統功能 85 5.6.2 系統建置 87 5.7 本章小結 89 第六章、保護管理系統模擬與分析 91 6.1 前言 91 6.2 模擬系統架構與參數 91 6.3 模擬情境規劃 93 6.4 模擬結果與討論 94 6.4.1 情境一 94 6.4.2 情境二 97 6.4.3 情境三 100 6.5 本章小結 106 第七章、結論與未來研究方向 107 7.1 結論 107 7.2 未來研究方向 108 參考文獻 109

[1] S. Rohjans, M. Uslar, R.Bleiker, J. González, M. Specht, T. Suding, and T. Weidelt, “Survey of Smart Grid Standardization Studies and Recommendations,” in Proceeding of the 1st Smart Grid Communications IEEE International Conference, pp. 583-588, Gaithersburg, 4-6 October, 2010.
[2] M. Uslar, S. Rohjans, R. Bleiker, J. González, M. Specht, T. Suding, and T. Weidelt, “Survey of Smart Grid Standardization Studies and Recommendations — Part 2,” in Proceeding of Innovative Smart Grid Technologies Conference Europe, pp. 1-6, Gothenburg, 11-13 October, 2010.
[3] SMB Smart Gird Strategic Group (SG3), IEC Smart Gird Standardization Roadmap, Edition 1.0, June 2010.
[4] H. J. Laaksonen, “Protection Principles for Future Microgrids,” IEEE Transactions on Power Electronics, Vol. 25, No. 12, pp. 2910-2918, December 2010.
[5] A. A. Salam, A. Mohamed, and M. A. Hannan, “Technical Challenges on Microgrids,” ARPN Journal of Engineering and Applied Sciences, Vol. 3, No. 6, December 2008.
[6] P. Gupta, R. S. Bhatia, and D. K. Jain, “Adaptive Protection Schemes for the Microgrid in a Smart Grid Scenario: Technical Challenges,” in Proceeding of Innovative Smart Grid Technologies - Asia (ISGT Asia), pp. 1-5, Bangalore, 10-13 November, 2013.
[7] A. Prasai, Y. Du, A. Paquette, E. Buck, R. Harley, and D. Divan, “Protection of Meshed Microgrids with Communication Overlay,” in Proceeding of Energy Conversion Congress and Exposition, pp. 64-71, Atlanta, 12-16 September, 2010.

[8] R. Bi, M. Ding, and T. T. Xu, ”Design of Common Communication Platform of Microgrid,” in Proceeding of Power Electronics for Distributed Generation Systems, 2nd IEEE International Symposium, pp. 735-738, Hefei, 16-18 June, 2010.
[9] IEC 61850-1, Communication Networks and System in Substations Part 1:Introduction and Overview, 2003.
[10] IEC 61850-5, Communication Networks and System in Substations Part 5:Communication Requirements for Functions and Devices Models, 2003.
[11] IEC 61850-6, Communication Networks and System in Substations Part 6:Configuration Description Language for Communication in Electrical Substations Related to IED, 2004.
[12] IEC 61850-7-1, Communication Networks and System in Substations Part 7-1:Basic Communication Structure for Substation and Feeder Equipment Principles and Model, 2003.
[13] IEC 61850-7-2, Communication Networks and System in Substations Part 7-2:Basic Communication Structure for Substation and Feeder Equipment Abstract Communication Service Interface (ACSI), 2003.
[14] IEC 61850-7-3, Communication Networks and System in Substations Part 7-3:Basic Communication Structure for Substation and Feeder Equipment Common Data Classes, 2003.
[15] IEC 61850-7-4, Communication Networks and System in Substations Part 7-4:Basic Communication Structure for Substation and Feeder Equipment Compatible Logical Node Classes and Data Classes, 2003.
[16] IEC 61850-9-1, Communication Networks and System in Substations Part 9-1:Specific Communication Service Mapping (SCSM) Sampled Values over Serial Unidirectional Multidrop Point to Point Link, 2003.

[17] IEC 61850-9-2, Communication Networks and System in Substations Part 9-2:Specific Communication Service Mapping Sampled Values over ISO/IEC 8802-3, 2004.
[18] R. E. Mackiewicz, “Overview of IEC 61850 and Benefits,” in Proceeding of 2005/2006 IEEE PES Transmission and Distribution Conference and Exhibition, pp. 376-383, Dallas, 21-24 May, 2006.
[19] R. Lopez, A. Moore, and J. Gillerman, “A Model-Drive Approach to Smart Substation Automation and Integration for Commission Federal de Electricidad,” in Proceeding of 2010 IEEE/PES Transmission and Distribution Conference and Exhibition, pp. 1-8, New Orleans, 19-22 April, 2010.
[20] A. K. Sahoo, “Protection of Microgrid through Coordinated Directional Over-current Relays,” in Proceeding of Global Humanitarian Technology Conference, pp. 129-134, Trivandrum, 26-27 September, 2014.
[21] L. J. Jin, M. M. Jiang, and G. Y. Yang, “Fault Analysis of Microgrid and Adaptive Distance Protection Based on Complex Wavelet Transform,” in Proceeding of Electronics and Application Conference and Exposition (PEAC), pp. 360-364, Shanghai, 5-8 November, 2014.
[22] S. M. Brahma, J. Trejo, and J. Stamp, “Insight into Microgrid Protection,” in Proceeding of Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), pp. 1-6, Istanbul, 12-15 October, 2014.
[23] M. A. Zamani, T. S. Sidhu, and A. Yazdani, “A Protection Strategy and Microprocessor-Based Relay for Low-Voltage Microgrids,” IEEE Transactions on Power Delivery, Vol. 26, No. 3, pp. 1873-1883, July 2011.
[24] W. K. A. Najy, H. H. Zeineldin, and W. L. Woon, “Optimal Protection Coordination for Microgrids with Grid-Connected and Islanded Capability,” IEEE Transactions on Industrial Electronics, Vol. 60, No. 4, pp. 1668-1677, April 2013.
[25] C. Wang, X. Yang, Z. Wu, Y. Che, L. Guo, S. Zhang, and Y. Liu, ”A Highly Integrated and Reconfigurable Microgrid Testbed with Hybrid Distributed Energy Sources,” IEEE Transactions on Smart Grid, Vol. PP, No. 99, October 2014.
[26] D. Ishchenko, A. Oudalov, and J. Stoupis, “Protection Coordination in Active Distribution Grids with IEC 61850,” Transmission and Distribution Conference and Exposition (T&D), 2012 IEEE PES, pp.1-6, Orlando FL, 7-10 May, 2012.
[27] C. Liang, M. E. Khodayar, and M. Shahidehpour, “Adaptive Protection System for Microgrids: Protectionpractices of a Functional Microgrid System,” IEEE Electrification Magazine, Vol. 2, No. 1, pp.66-80, March 2014.
[28] F. Katiraei and M. R. Iravani, “Power Management Strategies for a Microgrid with Multiple Distributed Generation Units”, IEEE Transactions on Power Systems, Vol. 21, No. 4, pp. 1821-1831, November 2006.
[29] R. Lasseter, A. Akhil, C. Marnay, J. Stephens, J. Dagle, R. Guttromson, A. S. Meliopoulous, R. Yinger, and Joe Eto, “Integration of Distributed Energy Resources the CERTS Microgrid Concept,” CERTS Program Office Lawrence Berkeley National Laboratory, October 2003.
[30] R. Lasseter, B. Schenkman, J. Stevens, H. Volkommer, D. Klapp, E. Linton, H. Hurtado, J. Roy, and N. Lewis, “CERTS Microgrid Laboratory Test Bed,” Lawrence Berkeley National Laboratory, February, 2009.
[31] R. Lasseter and J. H. Eto, “Value and Technology Assessment to Enhance the Business Case for the CERTS Microgrid,” University of Wisconsin-Madison, May 2010.
[32] J. Eto, “CERTS Microgrid Test Bed Phase III Activities - Role of Microgrids in Facilitating Integration of Distributed Renewable Electricity Sources,” Lawrence Berkeley National Laboratory, November 2010.
[33] European Commission, European Technology Platform SmartGrids - Vision and Strategy for Europe’s Electricity Networks of the Future, 2006.
[34] European Commission, European Technology Platform SmartGrids - Strategic Research Agenda for Europe’s Electricity Networks of The Future, 2007.
[35] European Commission, European Technology Platform SmartGrids - Strategic Deployment Document for Europe’s Electricity Networks of the Future, 2010.
[36] 「次世代・社会実証地域」選定結果,日本經濟產業省,2010年。
[37] 智慧電網總體規劃方案,經濟部能源局,2012年。
[38] 國家能源科技「十二五」規劃,中國國家能源局,2011年。
[39] 楊金石,台電智慧電網的推動與應用,台電綜合研究所,2011年。
[40] 微電網試驗場之研製,台灣電力公司,2011年。
[41] 核研所分散式發電及微型電網研發現況,核能研究所,2011年。
[42] IEEE Std. 1547a, IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems, 2014
[43] IEEE Std. 1547.2, IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems, 2008.
[44] IEEE Std. 519, IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems, 1992.
[45] 再生能源併網技術適用性分析,經濟部能源局,2014年。
[46] 電力品質確保係系統連系技術要件,資源庁,2013年。
[47] The World Wind Energy Association, 2014 Half-year-Report, 2014.
[48] 中華人民共和國國家品質監督檢驗檢疫總局,中華人民共和國國家標準風電場接入電力系統技術規定,2009年。
[49] 國家電網公司,光伏電站接入電網技術規定,2009年
[50] 國家電網公司,分散式能源接入電網技術規定,2010年。
[51] 中國國家標準化管理委員會,GB/T 14549-1993 電能品質公用電網諧波,1993年。
[52] 台灣電力公司,台灣電力公司再生能源發電系統併聯技術要點,2009年。
[53] T. Ackermann, Wind Power in Power Systems, John Wiley & Sons, Ltd, 2005.
[54] California Public Utilities Commission (CPUC), Recommendations for Updating the Technical Requirements for Inverters in Distributed Energy Resources, January 2014.
[55] 潘浩年,「網絡重構在配電網事故處理中的應用」,碩士論文,上海交通大學電子信息與電氣工程學院,2012年。
[56] 黎恒烜「微電網故障重構方法研究」,博士論文,華中科技大學電氣與電子工程學院,2012年。
[57] 王新永,「微電網故障重構技術研究」,碩士論文,三峽大學電氣與新能源學院,2013年。
[58] 施有為,「電力監控系統與資訊末端設備之演進」,電機月刊第九卷第八期,第156~162頁,1999年。
[59] 郭明錫,「電力自動化的架構與通訊協定」,電機月刊第九卷第十一期,第151~156頁,1999年。
[60] 林震邦,「IEC 61850通訊協定應用於變電所自動化技術」,台灣電力公司研究報告,2008年。

[61] 黃彥霖,「應用以IEC 61850為基礎之IED於智慧型電網之保護」,碩士論文,台灣科技大學電機工程系,2011年。
[62] 王金墩、張志聲,「監控系統(設備)通訊協定驗證實驗室之建立」完成報告,台灣電力股份有限公司綜合研究所,2007年12月,第2-5~2-11頁,第3-9~3-11頁,第3-47~3-58頁。
[63] S. Mohagheghi, M. Mousavi, J. Stoupis, and Z. Wang, “Modeling Distribution Automation System Components Using IEC 61850,” in Proceeding of Power & Energy Society General Meeting, pp.1-6, Calgary, 26-30 July, 2009.
[64] 黃仰賢,「建置以IEC 61850為基礎之微電網保護管理系統」,碩士論文,台灣科技大學電機工程系,2014年。
[65] 黃聖凱,「實現以IEC 61850通訊為基礎之微電網保護系統」,碩士論文,台灣科技大學電機工程系,2013年。
[66] P. P. Barker and R. W. De Mello, “Determining the Impact of Distributed Generation on Power Systems. I. Radial Distribution Systems,” in Power Engineering Society Summer Meeting, Vol. 3, pp. 1645-1656, Seattle, 16-20 July, 2000.
[67] T. S. Ustun, C. Ozansoy, and A. Ustun, “Fault Current Coefficient and Time Delay Assignment for Microgrid Protection System with Central Protection Unit,” IEEE Transactions on Power Systems, Vol. 28, No. 2, pp.598-606, May 2013.

無法下載圖示 全文公開日期 2018/07/22 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE