簡易檢索 / 詳目顯示

研究生: 徐林辰
Lin-Chen Hsu
論文名稱: 應用IEC 61850於微電網動態卸載技術之研究
Study of Dynamic Load-Shedding Technology based on IEC 61850 in Microgrid
指導教授: 辜志承
Jyh-Cherng Gu
口試委員: 蒲冠志
Guan-Zhi Pu
吳啟瑞
Chi-Jui Wu
楊明達
Ming-Ta Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 131
中文關鍵詞: 微電網動態卸載技術IEC 61850監視控制與資料擷取平台智慧電子裝置虛功率與電壓特性曲線
外文關鍵詞: Microgrid Dynamic Load-shedding, IEC 61850, SCADA, IED, QV Curve
相關次數: 點閱:248下載:26
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微電網泛指結合分散式電源與在地負載,且能獨立運轉的區域型電網。分散式電源與傳統集中式電源不同之處在於,其於機組數量多、分佈範圍廣、單機容量小、發電不穩定且缺乏旋轉電機慣性等特性。系統慣量不足將讓微電網因系統供需不平衡或短路故障等偶發事件,導致系統頻率的波動過劇,容易使分散式電源機組為自我保護而跳脫,進而擴大事故範圍。卸載為快速處理供需不平衡的解決方案之一。傳統卸載方案,利用預設之低頻閥值與參數執行卸載動作。但預設參數與微電網及時運轉情況難以完全符合,加上頻率響應的延遲特性,導致卸載量與實際需求量的不匹配,嚴重影響微電網維持其供電可靠度。因此,一套能隨微電網運轉狀態調整的自適應卸載策略是最好的選擇。
    本文建置一套整合監視控制與資料擷取平台(Supervisory Control and Data Acqisition, SCADA)、IEC 61850及智慧電子裝置(IED)之微電網動態卸載技術。藉由應用SCADA透過IED經由IEC 61850通訊方式取得微電網即時發電用電及電網結構資訊,再參考匯流排之虛功率與電壓,依據虛功率與電壓特性曲線(QV Curve),進行卸載優先度選擇並定期計算與更新其緊急卸載需求,以增加微電網運轉可靠度。為驗證微電網動態卸載技術之可行性,本文應用PSSE建立一微電網範例系統及其相應之SCADA與IEC 61850功能驗證平台,實際驗證IEC 61850準則之IED及SCADA通訊架構效能,再套用功能測試結果於不同模擬情境中,根據台灣電力公司之快速反應輔助服務要求,本文提出之微電網動態卸載技術,透過SCADA調度低頻卸載,皆能滿足規範要求。


    Microgrid(MG) is a power grid which combines distributed power resource(DER) and local load and is capable to run in islanded mode. DER differs from conventional power resources such as larger number of units, distributed installation, smaller capacity, unstable generation and low rotating inertia etc. These characteristics make MGs become lack of system inertia. Declined inertia may cause a rapid change in MG’s frequency when a contingency like power imbalance or short circuit fault occurs. Underfrequency conditions could make a generator trip in the purpose of self-protecting and enlarge the area of blackout. Load-shedding is a solution can quickly resolve power imbalance. Conventional underfrequency load-shedding uses preset frequency pickup and parameters but these preset parameters can’t estimate the dynamic load-shedding demand in MGs. The delayed response of system frequency may change into a mismatch of load-shedding demand. Therefore, an dynamic load-shedding method which can adapt easily to the operating conditions is the best option for MGs.
    This thesis proposes a dynamic Load-shedding method for MG which mainly included Supervisory Control and Data Acqisition(SCADA), IEC 61850 and Intelligent Electronic Device(IED). Utilizing SCADA to obtain the real-time information like generation, load and topology of a MG via IEC 61850 communication from IEDs. The proposed method sets prority of loads refers to QV curve and periodically updates contingency load-shedding demand. Aim to present the feasibility of the proposed method, This dissertation establishes a simulation of the MG and a corresponding communication testing platform. This dissertation certifies the performance of proposed method and use the result to simulate the in different condition.The proposed method satisfies the requirement of Fast Response Auxiliary Service made by Taiwan Power Company.

    中文摘要 I ABSTRACT V 誌謝 VII 目錄 IX 圖目錄 XIII 表目錄 XVII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 國內外相關研究 1 1.3 研究方法 3 1.4 論文架構 4 第二章 各國微電網案例及國內微電網智慧化發展趨勢 7 2.1 前言 7 2.2 國外微電網案例 7 2.2.1 美國 7 2.2.2 歐盟 10 2.2.3 日本 13 2.2.4 中國 16 2.3 國內微電網案例 19 2.3.1 台電綜合研究所微電網 19 2.3.2 澎湖智慧電網 21 2.4 國內微電網未來發展趨勢 23 2.4.1 台灣微電網智慧化發展與SCADA系統應用 23 2.4.2 應用IEC 61850於微電網智慧化 25 2.5 本章小結 26 第三章IEC 61850標準 27 3.1 前言 27 3.2 資料模型與邏輯節點 27 3.3 微電網監控系統規劃流程 29 3.4 抽象通訊服務介面(ACSI) 33 3.5 特定通訊服務映射(SCSM) 40 3.6 製造訊息規範(MMS) 41 3.7 通用物件導向變電所事件(GOOSE) 44 3.8 本章小結 47 第四章 微電網動態卸載技術 49 4.1 前言 49 4.2 微電網動態卸載技術架構與流程 50 4.3 微電網卸載量估算及協調策略 56 4.4 微電網卸載優先度選擇法 57 4.5 本章小結 60 第五章 微電網動態卸載技術功能測試 61 5.1 簡介 61 5.2 IEC 61850標準之傳輸延遲規範 63 5.3 微電網動態卸載技術驗證平台架構 65 5.4 測試過程與結果分析 70 5.5 本章小結 77 第六章 微電網動態卸載技術案例規劃 79 6.1 前言 79 6.2 七美島微電網範例系統 79 6.3 七美島微電網卸載策略與模擬情境規劃 81 6.4 情境模擬結果與分析 83 6.4.1 模擬情境1.1 83 6.4.2 模擬情境1.2 85 6.4.3 模擬情境2 87 6.4.4 模擬情境3.1 89 6.4.5 模擬情境3.2 91 6.4.6 結果與分析 93 6.5 本章小結 94 第七章 結論與未來研究方向 95 7.1 結論 95 7.2 未來研究方向 96 參考文獻 99 附錄A 七美島微電網模擬系統模型參數 i

    [1] IEEE Power Engineering Society (2007). “IEEE Guide for the Application of Protective Relays Used for Abnormal Frequency Load Shedding and Restoration.” IEEE Std C37.117, pp. 3-4.
    [2] Manh-Tuan Nguyen, Chin-I Wu, Jhih-Yang Siao, Ying-Yi Hong, Yung-Ruei Chang, Yih-Der Lee and Shen-Szu Wang (2018, Nov.).”Study on UFLS Strategy in a Stand-alone Power System.” Paper presented at the 2018 4th International Conference on Green Technology and Sustainable Development (GTSD), Ho Chi Minh City, Vietnam.
    [3] Wei Gu, Wei Liu, Chen Shen and Zhi Wua (2013). “Multi-stage underfrequency load shedding for islanded microgrid with equivalent inertia constant analysis.” International Journal of Electrical Power & Energy Systems,46, pp. 36-39.
    [4] Haixiang Gao, Ying Chen, Yin Xu and Chen-Ching Liu (2016). “Dynamic load shedding for an islanded microgrid with limited generation resources.” IET Generation, Transmission & Distribution, 10(12), pp. 2953-2961.
    [5] Youming Wang, Yong Wang, Ying Ding, Yingjian Zhou and Zhewen Zhang (2019, June). “A Fast Load-shedding Algorithm for Power System based on Artificial Neural Network.” Paper presented at the 2019 International Conference on IC Design and Technology (ICICDT), Suzhou, China
    [6] B. Giyoev, Y. Artsishevsky (2018, Oct.). “Load Shedding Devices in Distributed Generation: A Review.”Paper presented at the 2018 XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE), Novosibirsk, Russia.
    [7] 行政院全球資訊網-重要政策,全力衝刺太陽光電 (2019年10月29日)。檢自https://reurl.cc/9zMvNx (2020年5月8日)。
    [8] 行政院全球資訊網-重要政策,推動風力發電4年計畫—潔淨能源 乘風而起 (2019年10月29日)。檢自https://reurl.cc/W4jxQx (2020年5月8日)。
    [9] Eduardo Alegria, Anthony Ma and Osama Idrees (2014). “CERTS MICROGRID DEMONSTRATION WITH LARGE-SCALE ENERGY STORAGE AND RENEWABLES AT SANTA RITA JAIL.” IEEE Transcation on Smart Grid, 5(2), pp. 937-943.
    [10] Mark B. Glick (2019, Feb.). “International Collaboration on AI-Based Microgrid Platforms, Renewable Integration & Energy Policy.” Paper presented at the 2019 NASEO Energy Policy Outlook Conference, Washington, DC, USA.
    [11] Hannu Laaksonen, Dmitry Ishchenko and Alexandre Oudalov (2014). “Adaptive Protection and Microgrid Control Design for Hailuoto Island.” IEEE Transcation on Smart Grid, 5(2), pp. 27-31.
    [12] Henning Wilms, Dominik Mildt, Marco Cupelli, Antonello Monti, Peder Kjellen, Thomas Fischer, Demijan Panic, Michael Hirst, Eugenio Scionti, Sebastian Schwarz, Paul Kessler and Luis Hernandez (2018), “Microgrid Field Trials in Sweden:Expanding the Electric Infrastructure in the Village of Simris.” IEEE Electrification Magazine, 6(4), pp. 48-62.
    [13] The Okinawa Electric Power Company (2012). “Renewable energy integration to remote island grids island grids – Miyako Island Miyako Island.” Retrieved from https://www.irena.org/-/media/Files/IRENA/Agency/Articles/2012/May/11_Shinji-Uehara_Okiden.pdf?la=en&hash=EC4BCD1FC217E99A7C29BB5BBBCBB5EEB441C61A (May 8, 2020).
    [14] Keiichi Hirose (2013,Nov.). “Behavior of the Sendai Microgrid during and after the 311 Great East Japan Disaster.”Paper present at the Intelec 2013 35th International Telecommunications Energy Conference SMART POWER AND EFFICIENCY, Congress Center Hamburg (CCH), Germany.
    [15] Hiroshi Irie(2012), “Sendai Microgrid - Introduction and Use Case.” Retrieved from http//e2rg.com/microgrid-2012/Sendai_Irie.pdf (May 8, 2020)
    [16] 田盈、孟賽、鄒欣潔、呂振寧、王衛星 (2015),兆瓦級海島微電網通信網絡架構研究及工程應用,電力系統保護與控制,43(19),112-117頁。
    [17] Zhao Bo (2012). “NANJI ISLAND Microgrid Demonstration.” Retrieved from https://microgrid-symposiums.org/wp-content/uploads/2014/12/tianjin_bo-zhao.pdf (May 8, 2020).
    [18] 顏佑 (2019)。應用集群分析於微電網調適保護之研究。碩士學位論文,國立台灣科技大學,台北市。
    [19] 林法正 (2012)。澎湖低碳島與智慧電網示範規劃。檢自http://www.smart-grid.org.tw/userfiles/vip2/%E6%BE%8E%E6%B9%96%E4%BD%8E%E7%A2%B3%E5%B3%B6%E8%88%87%E6%99%BA%E6%85%A7%E9%9B%BB%E7%B6%B2%E7%A4%BA%E7%AF%84%E8%A6%8F%E5%8A%83.pdf (May 8, 2020)。
    [20] 張建國、黃怡碩、陳翔雄 (2015年12月)。澎湖智慧電網示範系統規劃與推動。「中華民國第三十六屆電力工程研討會」發表之論文,桃園市中原大學。
    [21] 林法正、陳彥豪、盧思穎、陳毓文 (2017年7月),澎湖群島智慧電網示範介紹,國土及公共治理季刊,5(2),62-73頁。
    [22] 台電新竹區營業處調度組 (2015)。配電自動化監測與運轉。檢自http://www.t-saudi.org.tw/public/journals/192_1436851672.pdf (2020年5月)
    [23] 經濟部 (2017)。台電月刊650期。檢自https://reurl.cc/VaKM35 (2020年5月)
    [24] 經濟部 (2018)。台電月刊672期。檢自https://reurl.cc/k5myZ3 (2020年5月)
    [25] 經濟部 (2019)。台電月刊680期。檢自https://reurl.cc/vnrvmk (2020年5月)
    [26] 蔡岱陵 (2017)。整合風機於智慧型變電所自動化之研究。碩士學位論文,國立台灣科技大學,台北市。
    [27] IEC 57 (2009). IEC 61850-6 edition 2.0. Communication Networks and Systems for power utility automation Part 6: Configuration description language for communication in electrical substations related to IEDs, pp. 11-16.
    [28] IEC 57 (2011). IEC 61850-7-1 edition 2.0, Communication networks and systems for power utility automation Part 7-1: Basic communication structure Principles and models, p. 70.
    [29] IEC 57 (2011). IEC 61850-8-1 edition 2.0, Communication Networks and Systems for power utility automation Part 8-1: Specific Communication Service Mapping (SCSM) Mappings to MMS (ISO/IEC 9506-1 and ISO/IEC 9506-2) and to ISO/IEC 8802-3, p. 22.
    [30] IEC 57 (2013). IEC 61850-5 edition 2.0, Communication networks and systems for power utility automation Part 5:Communication requirements for functions and device models , pp. 62-63.
    [31] IEC 57 (2012). IEC 61850-10 edition 2.0, Communication networks and systems for power utility automation Part 10: Conformance testing, pp. 73-75
    [32] Info Tech Wojciech E. Kozlowski and Marcin Pazik (2019, Oct.), IEC 61850 standard:Communication networks and systems for power utility automation. Training material, p.244
    [33] IEC 57 (2010). IEC 61850-7-2 edition 2.0, Communication Networks and Systems for power utility automation Part 7-2:Basic information amd Communication Structure Abstract Communication Service Interface(ACSI), pp. 15-20.
    [34] 王德文 (2008)。基於 MMS 的 ACSI 基本信息模型獲取方法。電力系統自動化期刊,第32卷,第22期,56-60頁。
    [35] 黃彥霖 (2011)。應用以IEC 61850為基礎之IED於智慧型電網之保護。碩士學位論文,國立臺灣科技大學,台北市。
    [36] 電力調度處 (2019),低頻卸載(UFLR)參與快速反應輔助服務之規劃,未出版。
    [37] Jidong Wang (2017). ”Intelligent Under Frequency and Under Voltage Load Shedding Method Based on the Active Participation of Smart Appliances.” IEEE Transactions on Smart Grid, 8(1), pp. 353-361.
    [38] 中央社,澎湖七美大型智慧電網啟用,綠電減碳一年還能省 5000 萬台幣 (2018年5月16日)。檢自https://buzzorange.com/techorange/2018/05/16/qimei-smart-grid/ (2020年5月)
    [39] 張政文 (2016)。含高佔比綠能發電之離島電力系統分析。碩士學位論文,國立中山大學,高雄市。
    [40] 鄭尊仁 (2015)。太陽光伏發電對小型島嶼電力系統之衝擊分析。碩士學位論文,南台科技大學,台南市。

    QR CODE