簡易檢索 / 詳目顯示

研究生: 徐榮懋
Rong-Mao Xu
論文名稱: DSP控制之交錯式無橋降壓型功率因數修正器
DSP-control Interleaved Bridgeless Buck Power Factor Corrector
指導教授: 謝耀慶
Yao-ching Hsieh
邱煌仁
Huang-jen Chiu
口試委員: 林景源
Jin-yuan Lin
張永農
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 92
中文關鍵詞: 功率因數修正交錯式無橋降壓型轉換器箝位電流模式數位控制總諧波失真
外文關鍵詞: power factor correction, interleaved bridgeless buck convertor, clamped-current mode, digital control, total harmonic distortion
相關次數: 點閱:356下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要研製一數位交錯式降壓型功率因數修正器。採用箝位電流控制來實現,控制方式簡單且響應特性快。在此控制模式下,電感電流可操作在連續導通模式(CCM)和不連續導通模式(DCM)。在不連續導通模式時,功率開關具有零電流切換之特性;連續導通模式時,峰值電流應力較低,可減少損失改善效率。控制電路方面採用數位控制,使用德州儀器TMS320X28035微處理器做為控制核心,以數位的方式實現箝位電流模式控制。並且藉由數位控制的方式,可以對不同的輸入電壓進行斜率補償,進而提高功率因數和改善總諧波失真。本文以數學軟體Mathcad進行運算和畫出不同斜率補償的輸入電流波形。本論文完成一650W數位交錯式降壓型功率因數修正器,經實驗證明,數位控制方式,確實可以提高功率因數和降低總諧波失真。


This thesis aims to study and implement a DSP-control interleaved bridgeless buck (PFC). A clamp-current control method is applied to achieve, simple design and fast-response performance. The inductor current can be operated under continuous conduction mode (CCM) and discontinuous conduction mode (DCM). In DCM operation, the power switches have the characteristics of zero-current switching. And the device current stress can be reduce to improve efficiency in CCM operation. A TI DSP chip TMS320X28305 is used to realize clamp-current control. The slope compensation can be adaptive with different input voltage conditions. The input power factor and the total harmonic distortion can be improved. In this thesis, a mathematics software Mathcad is used for calculating and drawing input current waveform under different slope compensation. Finally, a 650W DSP-control interleaved brigeless buck power factor corrector is implemented and tested. The experimental results show that the developed digital control can improve power factor and the total harmonic distortion compared with the conventional scheme.

摘 要 i Abstract ii 誌 謝 iii 目 錄 v 圖目錄 viii 表目錄 xi 第一章 緒論 1 1.1研究背景與目的 1 1.2論文大綱 2 第二章 交錯式無橋降壓型功率因數修正器 4 2.1功率因數與總諧波失真之定義 4 2.2無橋降壓型功率因數修正器架構與原理 7 2.2.1峰值電流控制法 8 2.2.2箝位電流控制法 9 2.3交錯式無橋降壓型功率因數修正器動作時序分析 11 2.3.1 交錯式無橋降壓型功率因數修正器動作時序分析 11 2.3.2 箝位電流控制應用 17 2.3.3 斜率補償分析 29 第三章 數位控制介紹與設計 33 3.1數位控制介紹 33 3.2數位化交錯式無橋降壓型功率因數修正器 33 3.2.1 內建比較器模組介紹 34 3.2.2 ePWM模組介紹 35 3.3數位箝位電流模式 37 3.3.1 數位箝位電流模式 37 3.3.2 交錯式開關設定 38 3.4 系統流程規劃 40 3.4.1 系統控制流程 40 3.4.2 背景程式流程 41 3.4.3 中斷服務程式 42 第四章 電路設計與模擬 44 4.1電路規格介紹 44 4.2功率元件設計 44 4.2.1輸入電流分析 44 4.2.2輸出電感設計 46 4.2.3功率開關與功率二極體 48 4.2.4 輸出電容設計 50 4.3 取樣電路設計 50 4.3.1 輸入電壓取樣電路 50 4.3.2 輸出電流取樣電路 51 4.3.3 開關電流取樣電路 51 4.4 模擬與總諧波失真分析 52 4.4.1 模擬電路 52 4.4.2 功率因數與總諧波失真分析 54 第五章 實作驗證 59 5.1交錯式無橋降壓型功率因數修正器數據與波形 59 5.2 固定式與可變式斜率補償實驗結果比較 70 第六章 結論與未來展望 73 6.1結論 73 6.2未來展望 73 參考文獻 76

[1] 梁適安,交換式電源供給器之理論與實務設計,修訂版,全華科技圖書股份有限公司,2008年。
[2] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, Second Edition, Kluwer academic Publishers, 2001.
[3] A. I. Pressman, “Switching Power Supply Design,” McGraw-Hilll, Inc., 2009.
[4] Limits for Harmonic Current Emissions (Equipment Input Current<16A Per Phase), IEC/EN 61000-3-2, 1995
[5] B Wilkenson, “Power Factor Corrction and IEC 555-2,” Power Techniques Magazine, pp. 20-24, 1991.
[6] 劉嘉峻,「雙相交錯式無橋降壓型功率因數修正器之研製」,國立台灣科技大學電子工程系研究所碩士論文,民國102年。
[7] 陳育文,「交錯式降壓型功率因數修正器之研製」,國立台灣科技大學電子工程系研究所碩士論文,民國102年。
[8] L. Huber, Y. Jang, and M. M. Jovanović, “Performance Evaluation of Bridgeless PFC Boost Rectifiers,” IEEE Transactions on Power Electronics, Vol. 23, no. 3, pp. 1381-1390, May. 2008.
[9] Y. Jang and M. M. Jovanovic, “Bridgeless Buck PFC Rectifier,” IEEE, pp.23-29, 2010.
[10] L. Rossetto, G. Spiazzi, and P. Tenti, “Control Techniques for Power Factor Correction Converters,” Proc. of EPE International Power Electronics and Motion Control Conference, pp. 1310-1318, 1994.
[11] On Semiconduction, “Ramp Compensation for the NCP1200,” Applocation Note, March. 2001.
[12] L. Huber and M. M. Jovanonic, “Design-Oriented Analysis and Performance Evaluation of Clamped-Current-Boost Input-Current Shaper for Universal-Input-Voltage Range,” IEEE Transactions on Power Electronics, vol. 13, no. 3, pp. 528-537, May 1998.
[13] G. Young, G. Tomlins, and A. Keogh, “An AC/DC Converter,” World Intellectual Property Organization, 2006.
[14] L. Huber, L. Gang, and M. M. Jovanovic, “Design-Oriented Analysis and Performance Evaluation of Buck Front-End,” IEEE Transactions on Industrial Electronics, vol. 25. 1, pp. 85-94, May 2010.
[15] Texas-Instuments,-“TMS320F28035-Piccolo-Microcontrollers.”-Datasheet, 2011.
[16] Texas-Instruments,-“TMS320x2802x,-2803x-Piccolo-Analog-to-Digital Converter (ADC) and Comparator,” Application Report, 2011.
[17] Texas Instruments, “TMS320x2802x, 2803x Piccolo Enhanced Pulse Width Modulator (ePWM) Module,” Application Report, 2011
[18] Texas Instruments, “Digital Peak Current Mode Control with Slope Compensation Using the TMS320F2803x,” Application Report, 2011
[19] 陳讚,「基於DSP控制之交錯式降壓型功率因數修正器」,國立台灣科技大學電子工程系研究所碩士論文,民國102年。
[20] Texas Instruments, “C28x Digital Power Library,” Module User’s Guide, 2011.
[21] C2000 DSP 數位信號處理TMS320F2803x 使用手冊, 游謹憶
[22] H. Choi, “Interleaved Boundary Conduction Mode (BCM) Buck Power Factor Correction (PFC) Converter,” IEEE Transactionson Power Electronics, vol. 28, no. 6, pp. 2629-2634, June2013.
[23] Texas Instruments Inc, “Power Factor Correction Using the Buck Topology-efficiency Benefits and Practical Design Considerations,” Application Note SLUP264, June. 2010.
[24] Infineon, Inc., “IPW60R099CP CoolMOS Power Transistor,” Data Sheet, 2007.
[25] Cree, Inc., “C3D06060 Silicon Carbide Schottky Diode,” Data Sheet, 2013.
[26] Texas Instruments Inc, “UC384X Current Mode PWM Controller,” Data Sheet, April. 1997.
[27] Microchip, “Grid-Connected Solar Microinverter Reference Design Using a dsPIC digital Signal Controller,” 2010.

QR CODE