簡易檢索 / 詳目顯示

研究生: 王淳立
Chun-Li Wang
論文名稱: 裝載葉酸奈米金之鑲嵌式奈米纖維應用於表面增強拉曼分析
Composite Nanofibers loaded with Folic Acid Gold Nanoparticles for the Analysis of Surface-Enhanced Raman Scattering
指導教授: 何明樺
Ming-Hua Ho
口試委員: 謝學真
Hsyue-Jen Hsieh
蕭偉文
Wei-Wen Hsiao
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 142
中文關鍵詞: 奈米金奈米顆粒靜電紡絲奈米纖維生醫材料骨細胞拉曼
外文關鍵詞: gold nanoparticle, nanoparticle, electrospinning, nanofiber, osteoblast, SERS, biomaterial
相關次數: 點閱:447下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米金被細胞攝入後會變得難以掌控,攝入一段時間後奈米金會被細胞吐出,而單純的奈米金塗佈表面又有穩定性的疑慮。為了要解決以上問題,本研究將葉酸 (Folic acid, FA) 奈米金粒子鑲嵌進PDLLA (Poly(D,L-lactic acid)) 奈米纖維中,製備具有長時間拉曼增強效果SERS (Surface enhanced Raman scattering) 的複合型材料,當細胞培養於複合材料表面,細胞表面和奈米金接觸時並不會造成胞吞及胞吐作用,且奈米金的露出程度可藉由纖維的表面崩解而進行控制,利於長時間的骨細胞特性追蹤。
    本研究利用葉酸當作封端劑及還原劑,以一步加熱法合成出葉酸-奈米金粒子,並透過調整不同的葉酸濃度控制葉酸-奈米金粒子形狀,合成的葉酸奈米金粒子分為球型以及非球型,球型的葉酸奈米金粒子及非球型葉酸奈米金粒子粒徑分別為52.7±2.1 nm與63.3±1.7 nm, FTIR表面官能基檢測結果證實奈米金表面有葉酸的存在。在4℃下存放5天後,介達電位分別為-23 mV與-38 mV,處於中高度穩定狀態,經儲存30天後性質均未改變,證明具有良好的穩定性。
    利用靜電紡絲技術製備PDLLA纖維,並將葉酸奈米金包埋進奈米纖維中,接著用SEM觀測不同添加量對於纖維型態的影響。奈米金添加量提升時,纖維仍具有良好的分散性及大小均一性,TGA及XRD結果亦證實纖維中具有奈米金粒子,TEM結果則顯示纖維內部奈米粒子的分佈頗為均勻。透過長時間浸泡奈米纖維觀察其膨潤現象,在第五天時纖維表面逐漸瓦解,此時葉酸-奈米金粒子出現明顯裸露。在體外細胞實驗中觀察到,鑲嵌式奈米纖維具有良好的生物相容性,當奈米金粒子在纖維中的濃度提高至0.53 wt%時,並不會干擾細胞活性、鹼性磷酸酶分泌及礦化的表現。
    在骨分化前期時,無論是添加奈米金粒子或將細胞培養於鑲嵌式奈米纖維上,兩者皆能有效提升拉曼訊號。在骨分化中期與後期,鑲嵌式奈米纖維裸露出來的奈米金有效提升骨分化指標的拉曼訊號,至第二十天仍能看到明顯的骨分化蛋白與礦化表現。相對地,單純使用奈米金粒子的組別已無法觀察到顯著的骨分化訊號,以上結果證明利用包埋奈米金之奈米纖維可以進行骨細胞分化的長時間追蹤。
    未來可以調整拉曼激發光波長以減少螢光訊號,或將纖維包埋不同種類奈米粒子進行SERS檢測,藉此開發出增強效果更顯著的複合型材料。也可選用不同細胞進行SERS分析,比較不同細胞間的拉曼訊號增強效果。


    In previous studies, GNPs (Gold nanoparticles) were unmanageable after being ingested by cells and then would leave cells with invalid surface-enhanced Raman spectra (SERS) effects. It would be difficult to identify all the differentiation markers throughout the cell culture process. The direct coating of GNPs would lead to low stability, too. In order to solve these problems, the folic acid-gold nanoparticles (FA-GNPs) were embedded into PDLLA (Poly(D,L-lactic acid)) nanofibers. The composite materials developed in this research presented SERS effects with good duration and stability, allowing the long-term tracking of osteogenic differentiation.
    In this study, FA was used as a capping and reducing agent to synthesize FA-GNPs by a one-step heating process. The shape of FA-GNPs was controlled to be spherical or non-spherical by adjusting FA concentrations. The particle sizes of spherical and non-spherical FA-GNPs were 52.7±2.1 nm and 63.3±1.7 nm, respectively. The surface functional groups were detected by FTIR, and the existence of FA on particle surfaces was confirmed. After being stored at 4℃ for 5 days, the particle size was unchanged. The zeta potential was -23 mV for spherical GNPs and -38 mV for non-spherical GNPs, indicating the high stability of suspended FA-GNPs.
    The FA-GNPs were embedded into PDLLA nanofibers prepared by electrospinning, and SEM results indicated that the nanofibers were uniform and continuous with FA-GNPs addition. The existence and of FA-GNPs was confirmed by XRD and TGA. The uniform distribution of GNPs in nanofibers were testified according to TEM images. The swelling tests showed that the embedded GNPs were partially exposed after a 5-day incubation. From in vitro experiments, the composite nanofibers presented good biocompatibility. When FA-GNPs concentration was lower than 0.53 wt%, the cell activity, alkaline phosphatase (ALP) and biomineralization were not interfered.
    In the early stage of osteogenic differentiation, either adding FA-GNPs or culturing cells on composite nanofibers effectively enhanced the SERS signal intensity of differentiation indicators. However, the Raman signals of late osteogenic differentiation on nanofibers with FA-GNPs were still significant, but nanoparticles without embedding were almost ineffective in signal enhancement. The results supported that the duration of FA-GNPs in SERS was promoted successfully by embedding in nanofibers, allowing the long-tern monitoring of cellular fate by using Raman spectroscopy.

    In the future, the optimized wavelength of Raman excitation and different nanoparticles can be applied, which would reduce fluorescence noises and enhance reinforcement in SERS detection. Different cells can also be examined for the prevailing uses of the technique developed in this study.

    摘要 I Abstract III 誌謝 V 目錄 VII 圖目錄 XII 表目錄 XVII 方程式目錄 XVIII 專有名詞及縮寫 XIX 第一章 緒論 1 第二章 文獻回顧 3 2.1奈米金粒子 3 2.1.1 奈米金粒子之特性 3 2.1.2奈米金粒子之製備 4 2.2 奈米金粒子於醫學領域之應用 6 2.2.1藥物傳遞(drug delivery) 6 2.2.2光熱治療(photothermal therapy) 6 2.2.3生物檢測(biosensing) 7 2.3奈米金粒子與細胞間的作用 9 2.4奈米載體應用於生醫領域 11 2.5靜電紡絲原理 13 2.6拉曼散射 15 2.6.1拉曼散射在生物醫學領域之應用 20 2.6.2表面增強拉曼散射之原理 21 2.6.3表面增強拉曼散射在生物醫學領域之應用 23 2.6.4奈米粒子載體應用於表面增強拉曼散射 25 2.7骨母細胞 26 2.7.1骨母細胞來源 26 2.7.2骨母細胞的分化標記 27 第三章 實驗材料與方法 30 3.1實驗藥品 30 3.2實驗儀器 32 3.3實驗步驟 34 3.3.1 葉酸-奈米金粒子合成 34 3.3.2 葉酸-奈米金粒子物性分析 36 3.3.3 葉酸-奈米金粒子之殺菌程序 36 3.3.4 製備含有葉酸奈米金之PDLLA奈米纖維 37 3.4材料分析鑑定 38 3.4.1掃描式電子顯微鏡 (SEM)分析 38 3.4.2熱重分析 (TGA) 38 3.5 體外細胞實驗 39 3.5.1 實驗操作 39 3.5.2 細胞來源 39 3.5.3 培養基配置 40 3.5.4 細胞培養 42 3.5.5 細胞冷凍保存 42 3.5.6 細胞解凍及培養 43 3.5.7 細胞計數 44 3.5.8 粒線體活性測試 45 3.5.9鹼性磷酸酶測試 47 3.5.10蛋白質濃度測定 50 3.5.11 ARS染色 51 3.5.12 拉曼光譜檢測 52 第四章 結果與討論 53 4.1葉酸-奈米金合成形狀之探討 53 4.2葉酸-奈米金粒子物性分析 56 4.2.1葉酸-奈米金粒子粒徑及穩定度分析 56 4.2.2葉酸-奈米金粒子的前處理與定性定量分析 60 4.3 PDLLA鑲嵌式奈米纖維製備與分析 64 4.3.1鑲嵌顆粒對纖維型態之影響 64 4.3.2鑲嵌式奈米纖維內部分析 69 4.4奈米纖維降解測試 72 4.5 生物相容性 77 4.6鹼性磷酸酶表現 80 4.7礦化表現 84 4.8表面增強拉曼散射追蹤細胞分化 88 第五章 結論 104 參考文獻 106

    1. Gillibert, R., M. Sarkar, J.F. Bryche, R. Yasukuni, J. Moreau, M. Besbes, G. Barbillon, B. Bartenlian, M. Canva, and M. L. Chapelle “Directional surface enhanced Raman scattering on gold nano-gratings ” Nanotechnology; 2016; 27: 115202-115209
    2. Daniel, M.C., and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology” Chemical reviews; 2004; 104: 293-346
    3. Saha, K., S.S. Agasti, C. Kim, X. Li, and V.M. Rotello, “Gold nanoparticles in chemical and biological sensing” Chemical reviews; 2012; 112: 2739-2779
    4. Alivisatos, P., “The use of nanocrystals in biological detection” Nature biotechnology; 2004; 22: 47-52
    5. Brewer, S.H., W.R. Glomm, M.C. Johnson, M.K. Knag, and S. Franzen, “Probing BSA binding to citrate-coated gold nanoparticles and surfaces” Langmuir; 2005; 21: 9303-9307
    6. Lacerda, S.H.D.P., J.J. Park, C. Meuse, D. Pristinski, M.L. Becker, A. Karim, and J.F. Douglas, “Interaction of gold nanoparticles with common human blood proteins” ACS nano; 2010; 4: 365-379
    7. Maxwell, D.J., J.R. Taylor, and S. Nie, “Self-assembled nanoparticle probes for recognition and detection of biomolecules” Journal of the American Chemical Society; 2002; 124: 9606-9612
    8. Turkevich, J., G. Garton, and P. Stevenson, “The color of colloidal gold” Journal of colloid Science; 1954; 9: 26-35
    9. Frens, G., “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions” Nature physical science; 1973; 241: 20-22
    10. Jana, N.R., L. Gearheart, and C.J. Murphy, “Seed‐mediated growth approach for shape‐controlled synthesis of spheroidal and rod‐like gold nanoparticles using a surfactant template” Advanced Materials; 2001; 13: 1389-1393
    11. Jana, N.R., L. Gearheart, and C.J. Murphy, “Wet chemical synthesis of high aspect ratio cylindrical gold nanorods” The Journal of Physical Chemistry B; 2001; 105: 4065-4067
    12. Jana, N.R., L. Gearheart, S.O. Obare, and C.J. Murphy, “Anisotropic chemical reactivity of gold spheroids and nanorods” Langmuir; 2002; 18: 922-927
    13. Brust, M., M. Walker, D. Bethell, D.J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system” Journal of the Chemical Society; 1994: 801-802
    14. Norman, T.J., C.D. Grant, D. Magana, J.Z. Zhang, J. Liu, D. Cao, F. Bridges, and A. Buuren, “Near infrared optical absorption of gold nanoparticle aggregates” The Journal of Physical Chemistry B; 2002; 106: 7005-7012
    15. Malikova, N., L. Santos, M. Schierhorn, N.A. Kotov, and L.M. Marzán, “Layer-by-layer assembled mixed spherical and planar gold nanoparticles: control of interparticle interactions” Langmuir; 2002; 18: 3694-3697
    16. Huang, H. and X. Yang, “Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method” Carbohydrate research; 2004; 339: 2627-2631
    17. Sylvestre, J.P., A.V. Kabashin, E. Sacher, M. Meunier, and J.H. Luong, “Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins” Journal of the American Chemical Society; 2004; 126: 7176-7177
    18. Mittal, A.K., Y. Chisti, and U.C. Banerjee, “Synthesis of metallic nanoparticles using plant extracts” Biotechnology advances; 2013; 31: 346-356
    19. Sharma, J., Y. Tai, and T. Imae, “Biomodulation approach for gold nanoparticles: synthesis of anisotropic to luminescent particles” Chemistry–An Asian Journal; 2010; 5: 70-73
    20. Li, G., D. Li, L. Zhang, J. Zhai, and E. Wang, “One‐step synthesis of folic acid protected gold nanoparticles and their receptor‐mediated intracellular uptake” Chemistry–A European Journal; 2009; 15: 9868-9873
    21. Qian, J., X. Li, M. Wei, X. Gao, Z. Xu, and S. He, “Bio-molecule-conjugated fluorescent organically modified silica nanoparticles as optical probes for cancer cell imaging” Optics express; 2008; 16: 19568-19578
    22. Brannon-Peppas, L. and J.O. Blanchette, “Nanoparticle and targeted systems for cancer therapy” Advanced drug delivery reviews; 2004; 56: 1649-1659
    23. De, M., P.S. Ghosh, and V.M. Rotello, “Applications of nanoparticles in biology” Advanced Materials; 2008; 20: 4225-4241
    24. Dixit, V., J. Bossche, D.M. Sherman, D.H. Thompson, and R.P. Andres, “Synthesis and grafting of thioctic acid− PEG− folate conjugates onto Au nanoparticles for selective targeting of folate receptor-positive tumor cell” Bioconjugate chemistry; 2006; 17: 603-609
    25. Tong, L., Y. Zhao, T.B. Huff, M.N. Hansen, A. Wei, and J.X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity” Advanced Materials; 2007; 19: 3136-3141
    26. Cole, J.R., N.A. Mirin, M.W. Knight, G.P. Goodrich, and N.J. Halas, “Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications” The Journal of Physical Chemistry C; 2009; 113: 12090-12094
    27. Han, M.S., A.K. Jean, B.K. Oh, J. Heo, and C.A. Mirkin, “Colorimetric screening of DNA‐binding molecules with gold nanoparticle probes” Angewandte Chemie; 2006; 118: 1839-1842
    28. Oh, E., M.Y. Hong, D. Lee, S.H. Nam, H.C. Yoon, and H.S. Kim, “Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles” Journal of the american chemical society; 2005; 127: 3270-3271
    29. Katz, E., I. Willner, and J. Wang, “Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles” Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis; 2004; 16: 19-44
    30. Aroca, R., R. Puebla, N. Pieczonka, S. Cortez, and J. Ramos, “Surface-enhanced Raman scattering on colloidal nanostructures” Advances in colloid and interface science; 2005; 116: 45-61
    31. Oh, N. and J.H. Park, “Endocytosis and exocytosis of nanoparticles in mammalian cells” International journal of nanomedicine; 2014; 9: 51-53
    32. Kruth, H.S., N.L. Jones, W. Huang, B. Zhao, I. Ishii, J. Chang, C.A. Combs, D. Malide, and W.Y. Zhang, “Macropinocytosis is the endocytic pathway that mediates macrophage foam cell formation with native low density lipoprotein” Journal of Biological Chemistry; 2005; 280: 2352-2360
    33. Hilgenbrink, A.R. and P.S. Low, “Folate receptor-mediated drug targeting: from therapeutics to diagnostics” Journal of pharmaceutical sciences; 2005; 94: 2135-2146
    34. Goyal, R., L.K. Macri, H.M. Kaplan, and J. Kohn, “Nanoparticles and nanofibers for topical drug delivery” Journal of Controlled Release; 2016; 240: 77-92
    35. Bhardwaj, N. and S.C. Kundu, “Electrospinning: a fascinating fiber fabrication technique” Biotechnology advances; 2010; 28: 325-347
    36. Valenti, S., A. Diaz, M. Romanini, L.J. Valle, J. Puiggalí, J.L. Tamarit, and R. Macovez, “Amorphous binary dispersions of chloramphenicol in enantiomeric pure and racemic poly-lactic acid: Morphology, molecular relaxations, and controlled drug release” International journal of pharmaceutics; 2019; 568: 118565-118572
    37. Liu, W., L. Zhu, Y. Ma, L. Ai, W. Wen, C. Zhou, and B. Luo, “Well-ordered chitin whiskers layer with high stability on the surface of poly (D, L-lactide) film for enhancing mechanical and osteogenic properties” Carbohydrate polymers; 2019; 212: 277-288
    38. Gierej, A., M. Vagenende, A. Filipkowski, B. Siwicki, R. Buczynski, H. Thienpont, S. Vlierberghe. T. Geernaert, P. Dubruel, and F. Berghmans, “Poly (D, L-lactic acid)(PDLLA) biodegradable and biocompatible polymer optical fiber” Journal of Lightwave Technology; 2019; 37: 1916-1923
    39. Verreck, G., I. Chun, J. Rosenblatt, J. Peeters, A. Dijck, J. Mensch, M. Noppe, and M.E. Brewster, “Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer” Journal of controlled release; 2003; 92: 349-360
    40. Macri, L.K., L. Sheihet, A.J. Singer, J. Kohn, and R.A. Clark, “Ultrafast and fast bioerodible electrospun fiber mats for topical delivery of a hydrophilic peptide” Journal of controlled release; 2012; 161: 813-820.
    41. Jiang, S.,Y. Chen, G. Duan, C. Mei, A. Greiner, and S. Agarwal, “Electrospun nanofiber reinforced composites: A review” Polymer Chemistry; 2018; 9: 2685-2720
    42. Li, D. and Y. Xia, “Electrospinning of nanofibers: reinventing the wheel?” Advanced materials; 2004; 16: 1151-1170
    43. Xue, J., T. Wu, Y. Dai, and Y. Xia, “Electrospinning and electrospun nanofibers: Methods, materials, and applications” Chemical reviews; 2019; 119: 5298-5415
    44. Wang, B., Y. Wang, T. Yin, and Q. Yu, “Applications of electrospinning technique in drug delivery” Chemical Engineering Communications; 2010; 197: 1315-1338
    45. Nam, S.H., H.S. Shim, Y.S. Kim, M.A. Dar, J.G. Kim, and W.B. Kim, “Ag or Au nanoparticle-embedded one-dimensional composite TiO2 nanofibers prepared via electrospinning for use in lithium-ion batteries” ACS applied materials & interfaces; 2010; 2: 2046-2052
    46. Chen, D., L. Zhang, P. Ning, H. Yuan, Y. Zhang, M. Zhang, T. Fu, and X. He, “In-situ growth of gold nanoparticles on electrospun flexible multilayered PVDF nanofibers for SERS sensing of molecules and bacteria” Nano Research; 2021; 14: 4885-4893
    47. McCreery, R.L., “Raman spectroscopy for chemical analysis” Measurement science and technology; 2001; 12: 653-659
    48. Stewart, S., D. Shea, C.P. Tarnowski, M.D. Morris, D. Wang, R. Franceschi, D. Lin, and E. Keller, “Trends in early mineralization of murine calvarial osteoblastic cultures: a Raman microscopic study” Journal of Raman Spectroscopy; 2002; 33: 536-543
    49. Hashimoto, A., Y. Yamaguchi, L.D. Chiu, C. Morimoto, K. Fujita, M. Takedachi, S. Kawata, S. Murakami, and E. Tamiya, “Time-lapse Raman imaging of osteoblast differentiation” Scientific reports; 2015; 5: 1-8
    50. Chiang, Y.H., S.H. Wu, Y.C. Kuo, H.F. Chen, A. Chiou, and O.K. Lee, “Raman spectroscopy for grading of live osteosarcoma cells” Stem Cell Research & Therapy; 2015; 6: 1-8
    51. Kang, L.L., Y.X. Huang, and Z.J. Wu, “Study of spectrum processing method for Raman microscopy on single living cell” Spectroscopy and Spectral Analysis; 2011; 31: 408-411
    52. Hart, R., J. Bergman, and A. Wokaun, “Surface-enhanced Raman scattering from silver particles on polymer-replica substrates” Optics Letters; 1982; 7: 105-107
    53. Jeanmaire, D.L. and R.P. Van Duyne, “Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode” Journal of electroanalytical chemistry and interfacial electrochemistry; 1977; 84: 1-20
    54. Moskovits, M., “Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals” The Journal of Chemical Physics; 1978; 69: 4159-4161
    55. Kneipp, K., Y. Wang, H. Kneipp, I. Itzkan, R.R. Dasari, and M.S. Feld, “Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering” Physical review letters; 1996; 76: 2444-2451
    56. Kneipp, K., H. Kneipp, G. Deinum, I. Itzkan, R.R. Dasari, and M.S. Feld, “Single-molecule detection of a cyanine dye in silver colloidal solution using near-infrared surface-enhanced Raman scattering” Applied spectroscopy; 1998; 52: 175-178
    57. Koglin, E., J. Sequaris, and P. Valenta, “Surface Raman spectra of nucleic acid components adsorbed at a silver electrode” Journal of Molecular Structure; 1980; 60: 421-425
    58. Cotton, T.M., S.G. Schultz, and R.P. Van Duyne, “Surface-enhanced resonance Raman scattering from water-soluble porphyrins adsorbed on a silver electrode” Journal of the American Chemical Society; 1982; 104: 6528-6532
    59. Holt, R.E. and T.M. Cotton, “Free flavin interference in surface enhanced resonance Raman spectroscopy of glucose oxidase” Journal of the American Chemical Society; 1987; 109: 1841-1845
    60. Liu, Z., C. Hu, S. Li, W. Zhang, and Z. Guo, “Rapid intracellular growth of gold nanostructures assisted by functionalized graphene oxide and its application for surface-enhanced Raman spectroscopy” Analytical chemistry; 2012; 84: 10338-10344
    61. Hossain, M.K., H.Y. Cho, K.J. Kim, and J.W. Choi, “In situ monitoring of doxorubicin release from biohybrid nanoparticles modified with antibody and cell-penetrating peptides in breast cancer cells using surface-enhanced Raman spectroscopy” Biosensors and Bioelectronics; 2015; 71: 300-305
    62. Sathuluri, R.R., H. Yoshikawa, E. Shimizu, M. Saito, and E. Tamiya, “Gold nanoparticle-based surface-enhanced Raman scattering for noninvasive molecular probing of embryonic stem cell differentiation” PloS one; 2011; 6: e22802
    63. Xiong, Z., X. Chen, P. Liou, and M. Lin, “Development of nanofibrillated cellulose coated with gold nanoparticles for measurement of melamine by SERS” Cellulose; 2017; 24: 2801-2811
    64. Xiong, Z., M. Lin, H. Lin, and M. Huang, “Facile synthesis of cellulose nanofiber nanocomposite as a SERS substrate for detection of thiram in juice” Carbohydrate polymers; 2018; 189: 79-86
    65. Satheeshkumar, E., P. Karuppaiya, K. Sivashanmugan, W.T. Chao, H.S. Tsay, and M. Yoshimura, “Biocompatible 3D SERS substrate for trace detection of amino acids and melamine” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy; 2017; 181: 91-97
    66. Cheng, M.L., B.C. Tsai, and J. Yang, “Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution” Analytica chimica acta; 2011; 708: 89-96
    67. Zhang, C.L., K.P. Lv, H.T. Huang, H.P. Cong, and S.H. Yu, “Co-assembly of Au nanorods with Ag nanowires within polymer nanofiber matrix for enhanced SERS property by electrospinning” Nanoscale; 2012; 4: 5348-5355
    68. Raisz, L.G., “Physiology and pathophysiology of bone remodeling” Clinical chemistry; 1999; 45: 1353-1358.
    69. Kostura, L., D.L. Kraitchman, A.M. Mackay, M.F. Pittenger, and J.W. Bulte, “Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesi” NMR in Biomedicine: An International Journal Devoted to the Development and Application of Magnetic Resonance In Vivo; 2004; 17: 513-517
    70. Andreas, K., R. Georgieva, M. Ladwig, S. Mueller, M. Notter, M. Sittinger, and J. Ringe, “Highly efficient magnetic stem cell labeling with citrate-coated superparamagnetic iron oxide nanoparticles for MRI tracking” Biomaterials; 2012; 33: 4515-4525
    71. Caplan, A.I. and S.P. Bruder, “Mesenchymal stem cells: building blocks for molecular medicine in the 21st century” Trends in molecular medicine; 2001; 7: 259-264
    72. Stein, G.S., J.B. Lian, J.L. Stein, A.J. Wijnen, and M. Montecino, “Transcriptional control of osteoblast growth and differentiation” Physiological reviews; 1996; 76: 593-629
    73. Liu, X., J. Cao, H. Li, J. Li, Q. Jin, K. Ren, and J. Ji, “Mussel-inspired polydopamine: a biocompatible and ultrastable coating for nanoparticles in vivo” ACS nano; 2013; 7: 9384-9395
    74. Teo, W.E. and S. Ramakrishna, “A review on electrospinning design and nanofibre assemblies” Nanotechnology; 2006; 17: R89
    75. Privman, V., D.V. Goia, J. Park, and E. Matijević, “Mechanism of formation of monodispersed colloids by aggregation of nanosize precursors” Journal of Colloid and Interface Science; 1999; 213: 36-45
    76. Dumur, F., A. Guerlin, E. Dumas, D. Bertin, D. Gigmes, and C.R. Mayer, “Controlled spontaneous generation of gold nanoparticles assisted by dual reducing and capping agents” Gold bulletin; 2011; 44: 119-137
    77. Cho, T.J. and V.A. Hackley, “Fractionation and characterization of gold nanoparticles in aqueous solution: asymmetric-flow field flow fractionation with MALS, DLS, and UV–Vis detection” Analytical and bioanalytical chemistry; 2010; 398: 2003-2018
    78. Jesna, K.K. and M. Ilanchelian, “Photophysical changes of thionine dye with folic acid capped gold nanoparticles by spectroscopic approach and its in vitro cytotoxicity towards A-549 lung cancer cells” Journal of Molecular Liquids; 2017; 242: 1042-1051
    79. Bhattacharjee, S., “DLS and zeta potential–what they are and what they are not? ” Journal of controlled release; 2016; 235: 337-351
    80. França, A., B. Pelaz, M. Moros, C. Espinel A. Hernández, C. López, V. Grazu, J.M. Fuente, I. Santos, and L.M. Marzán, “Sterilization matters: consequences of different sterilization techniques on gold nanoparticles” small; 2010; 6: 89-95
    81. Ross, K. and G. Galavazi, “The size of bacteria, as measured by interference microscopy” Journal of the Royal Microscopical Society; 1965; 84: 13-25
    82. Zhang, J., S. Rana, R. Srivastava, and R. Misra, “On the chemical synthesis and drug delivery response of folate receptor-activated, polyethylene glycol-functionalized magnetite nanoparticles” Acta Biomaterialia; 2008; 4: 40-48
    83. Tsai, S.W., J.W. Liaw, F.Y. Hsu, Y.Y. Chen, M.J. Lyu, and M.H. Yeh, “Surface-modified gold nanoparticles with folic acid as optical probes for cellular imaging” Sensors; 2008; 8: 6660-6673
    84. He, Y., X. Wang, P. Jin, B. Zhao, and X. Fan, “Complexation of anthracene with folic acid studied by FTIR and UV spectroscopies” Spectrochimica acta part A: molecular and biomolecular spectroscopy; 2009; 72: 876-879
    85. Albanese, A. and W.C. Chan, “Effect of gold nanoparticle aggregation on cell uptake and toxicity” ACS nano; 2011; 5: 5478-5489
    86. Ahire, J., D. Robertson, D.P. Neveling, A.J. Reenen, and L.M.T. Dicks, “Hyaluronic acid-coated poly (d, l-lactide)(PDLLA) nanofibers prepared by electrospinning and coating” Rsc Advances; 2016; 6: 34791-34796.
    87. Ma, Z., F. Chen, Y.J. Zhu, T. Cui, and X.Y. Liu, “Amorphous calcium phosphate/poly (D, L-lactic acid) composite nanofibers: electrospinning preparation and biomineralization” Journal of colloid and interface science; 2011; 359: 371-379
    88. Ray, S.S. and M. Okamoto, “Biodegradable polylactide and its nanocomposites: opening a new dimension for plastics and composites” Macromolecular Rapid Communications; 2003; 24: 815-840
    89. Fukushima, K., J.L. Feijoo, and M.C. Yang, “Comparison of abiotic and biotic degradation of PDLLA, PCL and partially miscible PDLLA/PCL blend” European Polymer Journal; 2013; 49: 706-717
    90. Mkandawire, M., M. Lakatos, A. Springer, A. Clemens, D Appelhans, U. Buchholz, W. Pompe, G. Rödel, and M. Mkandawire, “Induction of apoptosis in human cancer cells by targeting mitochondria with gold nanoparticles” Nanoscale; 2015; 7: 10634-10640
    91. Nekounam, H., Z. Allahyari, S. Gholizadeh. E. Mirzaei, M.A. Shokrgozar, and R. Majidi, “Simple and robust fabrication and characterization of conductive carbonized nanofibers loaded with gold nanoparticles for bone tissue engineering applications” Materials Science and Engineering: C; 2020; 117: 111226-111229
    92. Beck Jr, G.R., “Inorganic phosphate as a signaling molecule in osteoblast differentiation” Journal of cellular biochemistry; 2003; 90: 234-243
    93. Bellows, C., J. Heersche, and J. Aubin, “Inorganic phosphate added exogenously or released from β-glycerophosphate initiates mineralization of osteoid nodules in vitro” Bone and mineral; 1992; 17: 15-29
    94. Zhang, D., D Liu, J Zhang, C. Fong, and M. Yang, “Gold nanoparticles stimulate differentiation and mineralization of primary osteoblasts through the ERK/MAPK signaling pathway” Materials Science and Engineering: C; 2014; 42: 70-77
    95. Liu, D., J.C. Zhang, C.Q. Yi, and M.S. Yang, “The effects of gold nanoparticles on the proliferation, differentiation, and mineralization function of MC3T3-E1 cells in vitro” Chinese science bulletin; 2010; 55: 1013-1019
    96. Kneipp, K., A.S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, K.E. Peltier, J.T. Motz, R.R. Dasari, and M.S. Feld, “Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles” Applied spectroscopy; 2002; 56: 150-154
    97. Hanlon, E., R. Manoharan, T.W. Koo, K.E. Shafer, J.T. Motz, M. Fitzmaurice, J.R. Kramer, I. Itzkan, R.R. Dasari, and M.S. Feld, “Prospects for in vivo Raman spectroscopy” Physics in Medicine & Biology; 2000; 45: R1-R59
    98. Notingher, I., G. Jell, U. Lohbauer, V. Salih, and L.L. Hench, “In situ non‐invasive spectral discrimination between bone cell phenotypes used in tissue engineering” Journal of Cellular Biochemistry; 2004; 92: 1180-1192
    99. McManus, L.L., G.A. Burke, M.M. McCafferty, P. O'Hare, M. Modreanu, A.R. Boyd, and B.J. Meenan, “Raman spectroscopic monitoring of the osteogenic differentiation of human mesenchymal stem cells” Analyst; 2011; 136: 2471-2481
    100. Hashimoto, A., L.D. Chiu, K. Sawada, T. Ikeuchi, K. Fujita, M. Takedachi, Y. Yamaguchi, S. Kawata, S. Murakami, and E. Tamiya, “In situ Raman imaging of osteoblastic mineralization” Journal of Raman Spectroscopy; 2014; 45: 157-161
    101. Mandair, G.S. and M.D. Morris, “Contributions of Raman spectroscopy to the understanding of bone strength” BoneKEy reports; 2015; 4: 620-621
    102. Rufus, B. and E.C. Le Ru, “Investigation of particle shape and size effects in SERS using T-matrix calculations” Physical Chemistry Chemical Physics; 2009;11: 7398-7405
    103. Junqi, T., Q. Ou, H. Zhou, L. Qi, and S. Man, “Seed-mediated electroless deposition of gold nanoparticles for highly uniform and efficient SERS enhancement” Nanomaterials; 2019; 9: 185-189

    無法下載圖示 全文公開日期 2027/09/03 (校內網路)
    全文公開日期 2027/09/03 (校外網路)
    全文公開日期 2027/09/03 (國家圖書館:臺灣博碩士論文系統)
    QR CODE