簡易檢索 / 詳目顯示

研究生: 邱柏淳
Po-Chun Chiu
論文名稱: 以逆向噴流控制方柱周邊流場
Control of flow around a square cylinder by up-wind jet injection
指導教授: 黃榮芳
Rong-Fang Huang
口試委員: 林怡均
Yi-Jun Lin
許清閔
Ching-Min Hsu
孫珍理
Chen-Li Sun
張家和
Chir-Ho Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 234
中文關鍵詞: 流場控制噴流方柱
外文關鍵詞: flow control, square cylinder, jet
相關次數: 點閱:352下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究針對攻角為零度之二維方柱,於方柱迎風面中央射出一均勻逆向噴流,以雷諾數和噴流對橫風速度比(簡稱為注射比)為變數,探討橫風雷諾數在1600 ~ 4200之區間時,方柱周圍流場結構、尾流區渦漩逸放特性以及噴流之動態行為。在一氣動力風洞中,藉由煙霧可視化技術觀察並分析迎風面噴流及方柱尾流之流場特徵。使用熱線風速儀量測方柱尾流區渦漩逸放頻率及其引致之上游流場不穩定性。以PIV技術量化迎風面噴流結構,並與流場可視化之特徵比對。流場可視化的結果顯示,方柱迎風面噴流之特徵模態與注射比具有密切之關聯性。注射比小於1.0時,由方柱迎風面射出之噴流呈現搖擺模態,其頻率與尾流渦漩逸放頻率相同;在注射比於1.0至4.0之間,噴流隨機偏向某一邊且貼附於方柱迎風面,噴流氣柱高度受尾流渦漩逸放影響產生週期性的高低變化,稱振盪偏折模態;在注射比於4.0至8.0之間,噴流噴出後隨機偏邊且不再貼附於方柱迎風面,因噴流形成一包覆方柱之流場,其兩側邊界之距離遠大於方柱之寬度,使得方柱尾流兩側之剪應力層不再交互作用,致使原有之週期性渦漩逸放之現象不復可見,上游流場亦不具特徵頻率,稱為無振盪偏折模態;在注射比大於8.0時,噴流噴出後會隨機偏向一邊,且無週期性的擺動,在強勁的噴流影響下,尾流渦漩結構變得零碎,其渦漩逸放現象仍舊存在但不具週期性,導致上游亦無特徵頻率,稱為噴流型式模態。在搖擺模態及振盪偏折模態時,渦漩逸放頻率隨噴流對橫風速度比與雷諾數增加而增加。此外,經流場觀察及訊號分析,判斷噴流氣柱之搖擺現象乃尾流渦漩逸放現象所引致之行為。


The surface flow characteristics and the wake instability of a two-dimensional square cylinder controlled by up-wind jet injection were experimentally investigated. The characteristic flow patterns were observed by flow visualization. The wake and the jet instability characteristics were detected simultaneously by using a two one-component hot-wire anemometer. The flow field around the upstream cylinder surface was measured by a particle image velocimeter (PIV). The results of flow visualization showed that the features of flow were strongly subjected to the influences of the injection ratio R and Reynolds number Rew. At R < 1.0, the jet presented up-down flapping motion (which was denoted as the flapping mode). The flapping frequency coincided with the vortex shedding frequency. At 1.0 < R < 4.0, the jet deflected and attached to the upsurface of the cylinder, the jet column oscillated back-and-forth periodically (which was designated as the deflection with oscillation mode). The oscillating frequency of the jet column was the same as the vortex shedding frequency. At 4.0 < R < 8.0, the jet deflected without oscillation and did not attach to the upstream surface of the cylinder (which was designated as the deflection without oscillation mode). At R > 8.0, the jet presented unsteady up-down flapping motion (which was denoted as the jet-type mode). The main frequency in the flapping and the oscillation modes increased with increasing R and Rew. The flapping motion of the jet was induced by the oscillation motion of the vortical flow structure in the wake.

摘要 i Abstract ii 誌謝 iii 目錄 v 符號索引 viii 圖表索引 x 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.2.1 鈍體尾流 2 1.2.2 射流振盪 8 1.3 研究目標 9 第二章 研究構思及實驗設備、儀器與方法 10 2.1 研究構思 10 2.2 實驗設備 10 2.2.1 風洞 10 2.2.2 方柱噴流模型 12 2.3 實驗儀器與方法 13 2.3.1 自由流速的偵測 13 2.3.2 煙霧流場可視化 14 2.3.3 時序速度訊號的偵測 17 2.3.4 質點影像速度儀(Particle Image Velocimetry, PIV) 18 第三章 方柱上游流場特徵 24 3.1 無逆向噴流控制之方柱上游流場 24 3.1.1 流場可視化 24 3.1.2 時序速度訊號特性 25 3.2 受逆向噴流控制之方柱上游流場—搖擺(Flapping)模態 25 3.2.1 流場可視化 25 3.2.2 時序速度訊號特性 27 3.3 受逆向噴流控制之方柱上游流場—振盪偏折(Deflection with oscillation)模態 27 3.3.1 流場可視化 27 3.3.2 時序速度訊號特性 30 3.4 受逆向噴流控制之方柱上游流場—無振盪偏折(Deflection without oscillation)模態 31 3.4.1 流場可視化 31 3.4.2 時序速度訊號特性 33 3.5 受逆向噴流控制之方柱上游流場—噴流型式(Jet type)模態 35 3.5.1 流場可視化 35 3.5.2 時序速度訊號特性 36 3.6 方柱上游流場特徵模態分區 36 第四章 方柱尾流流場特徵 38 4.1 無逆向噴流控制之方柱尾流流場 38 4.1.1 流場可視化 38 4.1.2 時序速度訊號特性 39 4.2 搖擺模態的尾流流場 39 4.2.1 流場可視化 39 4.2.2 時序速度訊號特性 40 4.3 振盪偏折模態的尾流流場 40 4.3.1 流場可視化 40 4.3.2 時序速度訊號特性 41 4.4 無振盪偏折模態的尾流流場 42 4.4.1 流場可視化 42 4.4.2 時序速度訊號特性 43 4.5 噴流形式的尾流流場 45 4.5.1 流場可視化 45 4.5.2 時序速度訊號特性 45 4.6 尾流渦漩流逸對搖擺模態的影響 46 第五章 流場特徵量化 47 5.1 特徵模態速度場 47 5.1.1 速度向量流線圖 47 5.1.2 紊流強度分布圖 48 5.2 速度分布特性 51 5.3 時序速度訊號量化 56 第六章 結論與建議 61 6.1 結論 61 6.2 建議 62 參考文獻 64

[1] Nakayama, Y., and Boucher, R. F., Introduction to Fluid Mechanics, Arnold, Great Britain, 1999
[2] Lienhard, J. H., Synopsis of Lift Drag and Vortex Frequency Data for Rigid Circular Cylinders, Research Division Bulletin 300 , Washington State University, 1966.
[3] Huang, R. F., Chen, J. M. and Hsu C. M., “Modulation of surface flow and vortex shedding of a circular cylinder in the subcritical regime by self-excited vibration rod,” Journal of Fluid Mechanics, Vol.555, 2006, pp. 321-352.
[4] Zdravkovich, M. M., “Different modes of vortex shedding: an overview,” Journal of Fluids and Structures, Vol. 10, No. 5, July 1996, pp. 427-437.
[5] A. Roshko, “On the Wake and drag of bluff bodies,” Journal of Aeronautical Sciences, Vol. 22, No. 2, 1955, pp. 801
[6] Tritton, D. J., “Experiments on the flow past a circular cylinder at low reynolds numbers,” Journal of Fluids Mechanics, Vol. 6, part 4, Nov. 1959, pp. 547-567.
[7] Etkin, B., Kovbaoher, G. K. and Keefe, R. T., “Acoustic radiation froma stationary cylinder in fluid stream (Aeolian tones),” The Journal of the Acoustical Society of America, Vol. 29, No. 1, 1957, pp. 30.
[8] Weaver, W., “Wind-induced vibrations in antenna members,” Journal of the Engineering Mechanics Division, ASCE, Vol. 87, No. EM1, 1961, pp. 141-165.
[9] Gerrard, J. H., “An experimental investigation of the oscillating lift and drag of a circular cylinder shedding turbulent vortices,” Journal of Fluid Mechanics, Vol. 11, part 2, 1961, pp. 244-256.
[10] A. Roshko, “On the development of turbulent wakes from vortex streets,” NACA TN 2913, 1953.
[11] In, K. M., Choi, D. H. and Kim, M. U., “Two-dimensional viscous flow past a flat plate,” Fluid Dynamics Research, Vol. 15, No. 1, Jan. 1995, pp. 13-24.
[12] Dennis, S. C. R., Qiang, W., Coutanceau, M. and Launay, J. L., “Viscous flow normal to a flat plate at moderate reynolds numbers,” Journal of Fluid Mechaics, Vol. 248, Jan. 1993, pp. 605-635.
[13] Nakamura, Y., “Vortex shedding from bluff bodies and a universal strouhal number,” Journal of Fluids and Structures, Vol. 10, No. 2, Feb. 1996, pp. 159-171
[14] Matsumoto, M., “Vortex shedding of bluff bodies: A review,” Journal of Fluids and Structures, Vol. 13, No. 7-8, Oct. 1999, pp. 791-811.
[15] Bearman, P. W. and Trueman, D. M., “An investigation of the flow around rectangular cylinders,” Aeronautical Quarterly, Vol. 23, 1972, pp. 229-237.
[16] Noda, H. and Nakayama, A., “Free-stream turbulence effects on the instantaneous pressure and forces on cylinders of rectangular cross section,” Experiments in Fluids, Vol. 34, No. 3, Mar. 2003, pp. 332-344.
[17] Okajima, A., “Strouhal numbers of rectangular cylinders,” Journal of Fluid Mechanics, Vol. 123, Oct. 1982, pp. 379-398.
[18] Yang, W. J., Flow Visualization III, Proceedings of the third international symposium on flow visualization, September 6-9, 1983, pp. 381-386.
[19] Huang, R. F., Lin, B. H., and Yen, S. C., “Time-average topological flow patterns and their Influence on vortex shedding of a square cylinder in cross flow at incidence,” Journal of Fluids and Structures, Vol. 26, No. 3, 2010, pp. 406-429.
[20] Luo, S. C., Chew, Y. T. and Ng, Y. T., “Characteristics of square cylinder wake transition flows,” Physics of Fluids, Vol. 15, No. 9, September 2003, pp. 2549-2559.
[21] Rockwell, D. O., “Organized fluctuations due to flow past a square cross section cylinder,” Journal of Fluids Engineering, Vol. 99, 1977, pp. 511-516.
[22] Kwok, K. C. S., “Effects of turbulence on the pressure distribution around a square cylinder and possibility of reduction,” Journal of Fluids Engineering, Vol. 105, 1983, pp. 140-145.
[23] Chen, J. M. and Liu, C. H., “Vortex shedding and surface pressures on a square cylinder at incidence to a uniform air stream,” International Journal of Heat and Fluid Flow, Vol. 20, No. 6, 1999, pp 592-597.
[24] Yahya Erkan Akansu*, Erhan Fırat, “Control of flow around a square prism by slot jet injection from the rear surface,” Experimental Thermal and Fluid Science, Vol. 34, February 2010, pp. 906-914.
[25] F. Gu, J. S. Wang, X. Q. Qiao and Z. Huang., “Pressure distribution, fluctuating forces and vortex shedding behavior of circular cylinder with rotatable splitter plates.” Journal of Fluids and Structures, Vol. 28, 2012, pp. 263-278.
[26] Coanda, H. M., “Device for Deflecting a Stream of Elastic Fluid Projected into an Elastic Fluid,” United States Patent, No. 2052869, 1936.
[27] Newman, B. G., “The Deflection of Plane Jets by Adjacent Boundaries – Coanda Effect,” in Boundary Layer and Flow Control – Its Principles and Application, Vol. 1, Ed. Lachmann, G. V., Pergamon Press, New York, 1961, pp. 232-264.
[28] Tritton, D. J., Physical Fluid Dynamics, Second Edition, Oxford University Press, New York, 1988, pp. 150-152
[29] Yamasaki, H. and Honda, S., “A Unified Approach to Hydrodynamic Oscillator Type Flowmeters,” Journal of fluid control, Vol. 13, 1981, pp. 1-17.
[30] Sichlichting, H.. Boundary Layer Theory, 7th ed, Mcgraw-Hill, New York, 1993, pp. 699.
[31] Flagan, R. C. and Seinfeld J. H., Fundamentals of Air Pollution Engineering, Prentice Hall, Englewood Cliffs, New Jersey, 1988, pp.295-307.
[32] 莊翔竣, 以迎風面噴流控制方柱流場特性, 國立台灣科技大學機械工程研究所碩士論文, 2012.

無法下載圖示 全文公開日期 2018/06/11 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE