簡易檢索 / 詳目顯示

研究生: 蕭又榮
You-Rong Hsiao
論文名稱: 利用溶膠凝膠法製備含有benzo[c]cinnoline之聚苯并咪唑之質子交換膜及其於燃料電池之應用
Synthesis and Characterization of Polybenzimidazoles Containing Benzo[c]cinnoline by Sol-Gel Method and Applications on High Temperature Proton Exchange Membrane Fuel Cells
指導教授: 陳志堅
Jyh-Chien Chen
口試委員: 游進陽
Chin-Yang Yu
劉彥群
Yen-Chun Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 76
中文關鍵詞: 聚苯并咪唑質子交換膜燃料電池質子傳導率benzo[c]cinnoline
外文關鍵詞: benzo[c]cinnoline, polybenzimidazole, proton exchange membrane fuel cell, proton conductivity
相關次數: 點閱:446下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用2,5-dibromonitrobenzene (1)作為起始物,經過Ullmann coupling反應、關環、氰化反應及水解反應得到二酸單體3,8-benzo[c]cinnoline dicarboxylic acid (4)。以此二酸、對苯二酸(terephthalic acid)與聯苯四胺(3,3’-diaminobenzidine)以聚磷酸製程(PPA process)合成聚苯并咪唑PBI100N、PBI80N、PBI60N、PBI40N、PBI20N及PPBI等一系列高分子。其固有黏度(Inherent viscosity)分別為4.38、4.58、3.88、4.29、3.75及3.26 dL/g。研究中成功使用溶膠凝膠法(Sol-gel transition fabrication)製備聚苯并咪唑薄膜。PBI100N/80N/60N/40N/20N/PPBI薄膜之熱裂解溫度Td5%介於646至683 ℃,展現出良好的熱穩定性。PBI100N/80N/60N/40N/20N/PPBI薄膜的acid doping level(ADL)為65~31 PA/RU,對應之薄膜拉伸強度為1.0~5.2 MPa。由於PBI100N/80N/60N在高溫下會發生溶解之現象,我們將薄膜浸泡於10~70 %磷酸溶液後,調控薄膜之ADL進行後續的測試。我們將PBI100N-30%/80N-40%/60N-50%/40N/20N/PPBI在160 ℃進行質子傳導率的測試,當ADL為27、30、30、41、31及34 PA/RU時,質子傳導率分別為0.15、0.16、0.17、0.25、0.19及0.17 S/cm。最後在160 ℃下進行全電池測試,PBI100N-30%、PBI80N-40%、PBI60N-50%、PBI40N、PBI20N及PPBI薄膜可分別達691、1014、1253、800、676、556 mW/cm2之電池功率,導入benzo[c]cinnoline (BZC)結構能夠增加傳導率及電池效能,證實含有benzo[c]cinnoline之聚苯并咪唑薄膜可應用於質子交換膜燃料電池。


The dicarboxylic acid, 3,8-benzo[c]cinnoline dicarboxylic acid (4), was prepared via several synthetic steps from 2,5-dibromonitrobenzene (1). Polybenzimidazoles PBI100N, PBI80N, PBI60N, PBI40N, PBI20N and PPBI were polymerized from 3,3’-diaminobenzidine and monomer (4) and terephthalic acid by using PPA process. The inherent viscosity of PBI100N, PBI80N, PBI60N, PBI40N, PBI20N and PPBI, measured in methanesulfonic acid at 35 ℃ and 0.2 g/dL, was 4.38, 4.58, 3.88, 4.29, 3.75 and 3.26 dL/g, respectively. PBI100N, PBI80N, PBI60N, PBI40N, PBI20N and PPBI could be prepared as flexible and tough membranes by sol-gel method. The thermal decomposition temperature at 5 % weight loss (T d5 %) of PBI100N, PBI80N, PBI60N, PBI40N, PBI20N and PPBI were in a range of 646~683 ℃. The phosphoric acid doping level (ADL, PA/RU) of PBI100N, PBI80N, PBI60N, PBI40N, PBI20N and PPBI membranes was 65~31 PA/RU. The tensile strength of PBI100N, PBI80N, PBI60N, PBI40N, PBI20N and PPBI membranes was 1.0~5.2 MPa with doping phosphoric acid. PBI100N, PBI80N, PBI60N membrane dissolve at high temperatures, we adjust ADL by immersing the film in 10 ~ 70% phosphoric acid solutions for subsequent test. The proton conductivities of PBI100N-30%, PBI80N-40%, PBI60N-50%, PBI40N, PBI20N and PPBI were 0.15, 0.16, 0.17, 0.25, 0.19 and 0.17 S/cm at 160 ℃ when acid doping level were 27, 30, 30, 41, 31 and 34 PA/RU, respectively. For single fuel cell test at 160 ℃, peak power density of PBI100N-30%, PBI80N-40%, PBI60N-50%, PBI40N, PBI20N and PPBI could reach 691, 1014, 1253, 800, 676 and 556 mW/cm2, respectively. It shows that polybenzimidazoles containing benzo[c]cinnoline are promising proton exchange membranes for HT-PEMFC applications.

中文摘要 I Abstract II 致謝 III 目錄 IV Figure 索引 VI Scheme索引 VIII Table 索引 IX 第一章 緒論 1 1.1 前言 1 1.2 燃料電池簡介 2 1.3 質子交換膜燃料電池之發電原理 3 1.4 質子交換膜燃料電池之結構 4 1.5 質子交換膜介紹 6 1.5.1 質子交換膜回顧 6 1.5.2 聚苯并咪唑之合成 9 1.5.3 聚苯并咪唑薄膜之製程 11 1.5.4 聚苯并咪唑之傳導機構 14 1.6 聚苯并咪唑之改質 16 1.7 含氮基團之聚苯并咪唑 19 1.8 研究動機 24 第二章 實驗步驟 25 2.1 實驗藥品 25 2.2 實驗儀器 27 2.3 單體合成 28 2.4 聚苯并咪唑合成及薄膜製備 31 2.5 膜電極組(Membrane electrode assembly, MEA)之製備 33 第三章 結果與討論 34 3.1 二酸單體之合成與性質表徵 34 3.2 聚苯并咪唑之合成 42 3.3 聚苯并咪唑之紅外線光譜 43 3.4 聚苯并咪唑之分子量與溶解度 44 3.5 聚苯并咪唑之熱學性質 46 3.6 聚苯并咪唑薄膜摻雜磷酸之方法 48 3.7 聚苯并咪唑之機械強度 54 3.8 質子傳導率測試 55 3.9 質子交換膜燃料電池測試 58 第四章 結論 61 參考資料 62

1. A. C. Dupuis, Progress in Materials Science, 2011, 56, 289-327.
2. J. A. Asensio, E. M. Sanchez and P. Gomez-Romero, Chemical Society Reviews, 2010, 39, 3210-3239.
3. J. Larminie and A. Dicks, "Fuel Cell Systems Explained ", 2 edition, John Wiley & Son Ltd, England, 2003.
4. A. J. Appleby and F. R. Foulkes, "Fuel Cell Handbook ", Van Nostrand Reinhold, New York, 1989.
5. Q. Li, R. He, J. O. Jensen and N. J. Bjerrum, Chemistry of Materials, 2003, 15, 4896-4915.
6. Y. Zhang, M. Litt, R. F. Savinell and J. S.Wainright, Polymer Preprints, 1999, 40, 480-481.
7. N. Asano, M. Aoki, S. Suzuki, K. Miyatake, H. Uchida and M. Watanabe, Journal of the American Chemical Society, 2006, 128, 1762-1769.
8. M. Rodgers, Y. Yang and S. Holdcroft, European Polymer Journal, 2006, 42, 1075-1085.
9. D. J. Liaw, K. L. Wang, Y. C. Huang, K. R. Lee, J. Y. Lai and C. S. Ha, Progress in Polymer Science, 2012, 37, 907-974.
10. J. S. Wainright, J. T. Wang, D. Weng, R. F. Savinell and M. Litt, Journal of The Electrochemical Society, 1995, 142, L121-L123.
11. O. Savadogo and B. Xing, Journal of New Materials for Electrochemical Systems, 2000, 3, 345-349.
12. Q. Li, R. He, J. O. Jensen and N. J. Bjerrum, Fuel Cells, 2004, 4, 147-159.
13. D. Henkensmeier, N. M. H. Duong, M. Brela, K. Dyduch, A. Michalak, K. Jankova, H. Cho, J. H. Jang, H. J. Kim, L. N. Cleemann, Q. Li and J. O. Jensen, Journal of Materials Chemistry A, 2015, 3, 14389-14400.
14. L. Xiao, H. Zhang, T. Jana, E. Scanlon, R. Chen, E. W. Choe, L. S. Ramanathan, S. Yu and B. C. Benicewicz, Fuel Cells, 2005, 5, 287-295.
15. Q. Li, R. He, J. A. Gao, J. O. Jensen and N. J. Bjerrum, Journal of The Electrochemical Society, 2003, 150, A1599-A1605.
16. C. Pan, R. He, Q. Li, J. O. Jensen, N. J. Bjerrum, H. A. Hjulmand and A. B. Jensen, Journal of Power Sources, 2005, 145, 392-398.
17. R. Bouchet and E. Siebert, Solid State Ionics, 1999, 118, 287-299.
18. Q. Li, H. A. Hjuler and N. J. Bjerrum, Journal of Applied Electrochemistry., 2001, 31, 773-779.
19. H. Vogel and C. S. Marvel, Journal of Polymer Science, 1961, 50, 511-539.
20. Y. Iwakura, K. Uno and Y. Imai, Journal of Polymer Science Part A: General Papers, 1964, 2, 2605-2615.
21. P. E. Eaton, G. R. Carlson and J. T. Lee, The Journal of Organic Chemistry, 1973, 38, 4071-4073.
22. Q. Li, J. O. Jensen, R. F. Savinell and N. J. Bjerrum, Progress in Polymer Science, 2009, 34, 449-477.
23. L. Xiao, H. Zhang, E. Scanlon, L. S. Ramanathan, E. W. Choe, D. Rogers, T. Apple and B. C. Benicewicz, Chemistry of Materials, 2005, 17, 5328-5333.
24. J. W. Lee, D. Y. Lee, H. J. Kim, S. Y. Nam, J. J. Choi, J. Y. Kim, J. H. Jang, E. Cho, S. K. Kim, S. A. Hong and T. H. Lim, Journal of Membrane Science, 2010, 357, 130-133.
25. K. A. Perry, K. L. More, E. Andrew Payzant, R. A. Meisner, B. G. Sumpter and B. C. Benicewicz, Journal of Polymer Science Part B: Polymer Physics, 2014, 52, 26-35.
26. J. C. Chen, M. C. Tsai Master Dissertation, Institute of Material Science and Engeering, National Taiwan University of Science and Technology, 2015.
27. A. Schechter, R. F. Savinell, Solid State Ionics, 2002, 147, 181-187.
28. C. E. Hughes, S. Haufe, B. Angerstein, R. Kalim, U. Mähr, A. Reiche and M. Baldus, The Journal of Physical Chemistry B, 2004, 108, 13626-13631.
29. Asensio, J. A.; Borrós, S.; Gómez-Romero, P., Journal of The Electrochemical Society, 2004, 151, A304-A310.
30. A. Kraytsberg and Y. Ein-Eli, Energy & Fuels, 2014, 28, 7303-7330.
31. H. Pu and G. Liu, Polymer International, 2005, 54, 175-179.
32. X. Li, G. Qian, X. Chen and B. C. Benicewicz, Fuel Cells, 2013, 5, 832-842.
33. T. H. Kim, S. K. Kim, T. W. Lim and J. C. Lee, Journal of Membrane Science, 2008, 323, 362-370.
34. S. W. Chuang and S. L. C. Hsu, Journal of Polymer Science Part A: Polymer Chemistry, 2006, 44, 4508-4513.
35. J. Yang, Q. Li, L. N. Cleemann, C. Xu, J. O. Jensen, C. Pan, N. J. Bjerrum and R. He, Journal of Materials Chemistry, 2012, 22, 11185-11195.
36. A. Carollo, E. Quartarone, C. Tomasi, P. Mustarelli, F. Belotti, A. Magistris, F. Maestroni, M. Parachini, L. Garlaschelli and P. P. Righetti, Journal of Power Sources, 2006, 160, 175-180.
37. S. K. Kim, T. H. Kim, J. W. Jung and J. C. Lee, Polymer, 2009, 50, 3495-3502.
38. A. Y. Leykin, A. A. Askadskii, V. G. Vasilev and A. L. Rusanov, Journal of Membrane Science, 2010, 347, 69-74.
39. R. A. Potrekar, M. P. Kulkarni, R. A. Kulkarni and S. P. Vernekar, Journal of Polymer Science Part A: Polymer Chemistry, 2009, 47, 2289-2303.
40. G. Sun, K. Han, J. Yu, H. Zhu and Z. Wang, RSC Advances, 2016, 6, 91068-91076.
41. J. C. Chen, H. C. Wu, C. J. Chiang, L. C. Peng, T. Chen, L. Xing and S. W. Liu, Polymer, 2011, 52, 6011-6019.
42. R. G. R. Bacon and S. G. Pande, Journal of the Chemical Society C: Organic, 1970, 14, 1967-1973.
43. J. F. Corbett and P. F. Holt, Journal of the Chemical Society (Resumed), 1961, 5029-5037.
44. D. A. Patrick, D. W. Boykin, W. D. Wilson, F. A. Tanious, J. Spychala, B. C. Bender, J. E. Hall, C. C. Dykstra, K. A. Ohemeng and R. R. Tidwell, European Journal of Medicinal Chemistry, 1997, 32, 781-793.
45. C. P. Joshua and V. N. R. Pillai, Indian Journal of Chemistry, 1974, 12, 60.
46. J. Lobato, P. Cañizares, M. A. Rodrigo, J. J. Linares and F. J. Pinar, International Journal of Hydrogen Energy, 2010, 35, 1347-1355.
47. S. A. Weissman, D. Zewge and C. Chen, The Journal of Organic Chemistry, 2005, 70, 1508-1510.
48. T. Kentaro, O. Tadashi, S. Yasumasa, O. Atsuyoshi, O. Shinzaburo and H. Naomi, Bulletin of the Chemical Society of Japan, 1976, 49, 3177-3180.
49. T. Kentaro, S. Yasumasa and O. Atsuyoshi, Bulletin of the Chemical Society of Japan, 1975, 48, 3298-3302.
50. T. Schareina, A. Zapf and M. Beller, Journal of Organometallic Chemistry, 2004, 689, 4576-4583.
51. D. T. Mowry, Chemical Reviews, 1948, 42, 189-283.
52. L. Friedman and H. Shechter, The Journal of Organic Chemistry, 1961, 26, 2522-2524.
53. T. Kentaro, O. Tadashi, S. Yasumasa and O. Shinzaburo, Chemistry Letters, 1973, 2, 471-474.
54. M. Sundermeier, A. Zapf and M. Beller, European Journal of Inorganic Chemistry, 2003, 2003, 3513-3526.
55. T. Schareina, A. Zapf, W. Mägerlein, N. Müller and M. Beller, Tetrahedron Letters, 2007, 48, 1087-1090.

無法下載圖示 全文公開日期 2022/08/14 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE