簡易檢索 / 詳目顯示

研究生: 張桂瑛
CHANG - KUEI YING
論文名稱: 線性漸變濾波器理論分析與製程開發
Fabrication and Theoretical Modeling of Order Sorting Linear Variable Filters
指導教授: 黃佑民
You-Ming Haung
柯正浩
Kevin Cheng-Hao Ko
口試委員: 王國雄
Wang, Kuo-Shong
成維華
CHENG,WEI-HUA
林榮慶
RONG-QING LIN
林俊源
Jiunn-Yuan Lin
吳正信
Jenq-Shinn Wu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 160
中文關鍵詞: 線性漸變濾波片光柵光譜儀繞射階數篩選蒸鍍光學薄膜光跡模擬
外文關鍵詞: linear variable filter, grating-based spectrometer, order sorting, evaporation, thin film, ray tracing.
相關次數: 點閱:214下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

為達到微型光譜儀技術完全自主之目的,本研究主要目的為開發二階線性漸變濾波片通用設計流程,此設計流程演算法適用於任何機型之蒸鍍系統,可自由調控模型參數,進而可模擬加入擋板後基材上膜厚分布情形,以利設計任何規格之二階線性漸變濾波片。本文所開發之二階線性漸變濾波片通用設計流程,於單次製程可量產151片之線性漸變濾波片,有別於其他文獻僅能少量生產,使製造成本大幅降低。
線性漸變濾波片可應用於光柵光譜儀,實際擺放於光譜儀偵測器前方,以濾除不必要之高階繞射之光譜,達到正確光譜解析之效果。為達漸變濾波效果,其光學薄膜厚度需呈漸變,故本研究設計局部擋板結構,將其固定置於基材上方,利用擋板遮蔽效應蒸鍍出線性漸變之膜厚。
本文首先依蒸鍍腔體幾何結構建立三維理論模型及光跡模擬模型,計算加入擋板後基材上膜厚分布,並將二組模型所得結果進行分析比較。研究結果顯示,於LVF漸變區域內二組模型之計算膜厚與實際蒸鍍膜厚分布極為吻合。3D理論模型中,理論模型及光跡模計算結果幾乎吻合,〖RMSD〗_((R-T))平均值為0.94%。〖RMSD〗_((E-T) )平均值為6.45%,〖RMSD〗_((E-R) )平均值為6.76%,兩組模型均能精準預測蒸鍍膜厚分布。且漸變區(25%-75%膜厚)輪廓趨近於線性,漸變區輪廓之線性回歸數R^2均大於等於0.9903,表示LVF於漸變區域線性度極佳,與設計目標相符。
薄膜輪廓差異較大為膜厚轉折處,實際蒸鍍膜厚轉折處成圓弧狀。為修正理此誤差,本文採用高斯摺積之方法,使理論模型之計算逼近實際膜厚分布。以h=10mm為例,未修正前之RMSD為7.24%,修正後之RMSD降低為1.44%,此方法可大幅提升修正後之理論膜厚與量測之吻合度。
為驗證線性漸變濾波之特性,本研究架設光譜量測系統,針對濾波片各線性位置進行光譜量測。另使用Essential Macleod模擬軟體計算LVF之濾波效能,以比較理論與模擬之差異,並作為理論與模擬架構修正之參考。在線性漸變區內,其臨界波長λ_C與LVF空間位置呈線型關係(以h=10mm為例R2=0.9962),驗證LVF實際可達理論設計之線性漸變濾波效能。本研究另以SEM觀察LVF漸變區之多層膜剖面結構,觀測結果顯示多層膜之各膜層堆疊平整,因漸變區內其各膜層呈現完整之薄膜結構,使其達到LVF漸變濾波效能。


This study proposes a generalized design process for order-sorting linear variable filter (LVF). In this design procedure, parameters used in theoretical model are adjusted according to the evaporator geometry to calculate the three-dimensional thin film thickness distribution on the substrate with a local mask. A novel method capable of high-volume high-precision production of LVFs. A total of 151 pieces of LVFs can be fabricated in a single batch and the process is much simpler than the previously reported methods. The LVF is placed on a linear detector sensor in the spectrometer to eliminate the overlapping orders of diffraction generated by the grating.
A local mask on top of the substrate positioned on a rotating substrate holder inside an evaporation chamber. This process generates a thin film thickness gradient on the substrate. The gradient thickness variation is controlled by adjusting the height of the local mask.
A theoretical analytical model and a ray tracing simulation model based on the geometry of a commercial coater and the local mask are developed to obtain the profiles of LVFs. The results of theoretical model and ray tracing simulation show good agreement with the evaporated profile. The averaged root-mean-square deviation is 0.94% between ray tracing and theoretical model, 6.45% between evaporation and theoretical model, and 6.76% between evaporation and ray tracing, respectively. This indicates that the proposed theoretical model and ray tracing simulation both predict the evaporated thin film profile of LVF with high precision. Within the 25%–75% thin film thickness range, the thickness profiles of the three models are linear. The coefficients of determination of linearity are greater than or equal to 0.9903.
Phenomenologically, compensating for the discrepancy between the theoretical and evaporation curves in the regions of thickness >75% and <25% is achieved by convoluting the theoretical thickness function with a Gaussian distribution. For the case of h=10mm, the result shows that the root-mean-square deviation between the evaporation and theoretical profiles reduces from 7.24% to 1.44% after applying the Gaussian convolution technique.
A spectrum measurement system is setup to measure the thin film transmittance at various locations on the LVF to evaluate the performance of linear variable filtering. The calculated transmittance of the LVF is obtained by Essential Macleod thin film software and the result is compared with the measurement. The experimental result shows that within the range of LVF zone, the critical wavelength presents a linear relationship with the position along the gradient thickness direction as predicted by the thin film transmittance calculation.
Within the LVF zone, cross-section of multilayer thin film observed by a scanning electron microscope shows smooth and solid film stacking between layers, which indicates the effectiveness of local mask thin film fabrication method.

中文摘要 I Abstract III 誌謝 VI 目錄 VII 符號索引 XI 圖表索引 XXI 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 4 1.3 文獻回顧 6 1.4 論文架構 12 第二章 理論分析 14 2.1 物理蒸鍍簡介 14 2.2. 薄膜厚度理論[22] 18 2.2.1 點蒸鍍源 19 2.2.2 面蒸鍍源 20 2.2 電子束蒸鍍原理介紹 23 2.3 光柵方程式 25 2.4 自由光譜範圍 27 2.5 截止濾光片 29 2.6 線性漸變濾波片 31 第三章 實驗架構及方法 33 3.1 結構模型 34 3.2 理論模型建立 37 3.2.1 平板型基板 37 3.1.2 圓頂型基板 39 第四章 膜厚均勻度調控 43 4.1 薄膜厚度之膜擬 43 4.2 膜厚均勻之設計 45 4.2.1 單片型遮罩 45 4.2.2 對稱型遮罩 54 第五章 漸變濾波片開發 69 5.1 漸變濾波片設計 69 5.1.1 局部擋板機構設計 69 5.1.2 理論模型 72 5.1.3 加入局部擋板之理論模型 75 5.1.4光跡模擬模型 81 5.2 實際蒸鍍之驗證 82 5.3 分析與討論 87 5.3.1 膜厚線性度與標準差分析 87 5.3.2 理論膜厚容忍誤差 88 5.3.3 膜厚誤差計算 91 第六章 二階線性濾波器通用流程開發 95 6.1 三維理論模型建立 95 6.1.1 三維理論模型演算 96 6.1.2 二維與三維理論模型比較 113 6.1.3 造成誤差之因素 116 6.1.4 薄膜臨界區域誤差修正 121 6.2 二階線性濾波器規格設計 127 6.2.1 效能關係式 127 6.2.2 膜層結構設計 130 6.2.3 不同相對膜厚之模擬光譜圖 132 6.3 漸變式濾波效能驗證 137 6.4 臨界波長與膜厚關係之推導與分析 143 6.5 以SEM觀察薄膜剖面 149 第一章 結論與未來展望 151 7.1 結論 151 7.2 未來之展望 154 參考文獻 155

[1] C. H. Ko, W.C. Liu, N. P. Chen, J. L. Shen, and J. S. Lin, “Double reflection in the concave reflective blazed grating”, Optics Express 15(17), pp. 10498–10503 (2007).
[2] J. P. Coates, “New microspectrometers,” Spectroscopy 15, pp. 21–27 (2000).
[3] B. Kim, J. Sinibaldi, and G. Karunasiri, “MEMS scanning diffraction grating spectrometer,” in proceedings of IEEE/LEOS International Conference on Optical MEMS and Their Applications Conference, pp. 46–47 (2006).
[4] C. H. Ko, K. Y. Chang, Y. M. Huang, J. R. Tsai, and B. J. Wang, “Analytical Modeling of a Linear Variable Filter for Computational Hyperspectral Imaging,” in proceedings of Hyperspectral Imaging and Sounding of the Environment, HW2B.2 (2015).
[5] P. J. Murr , M. Schardt and A. W. Koch, “Static hyperspectral fluorescence imaging of viscous materials based on a linear variable filter spectrometer,”Sensors 13(9), pp. 12687–12697 (2013).
[6] R. R. McLeod and T. Honda, “Improving the spectral resolution of wedged etalons and linear variable filters with incidence angle,”Optics Letters 30 (19), pp. 2647–2649 (2005).
[7] J. Pan, F. Zhang, and Y. Yan, “Mask designing of linear variable filters,” in proceedings of Second International Conference on Thin Film Physics and Applications, pp. 225–228 (1994).
[8] A. Emadi, H. Wu, G. De Graaf, and R. F. Wolffenbuttel, “Design and implementation of a sub-nm resolution microspectrometer based on a linear-variable optical filter,” Optics Express 20(1), pp. 489–507 (2012).
[9] A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, and R. F. Wolffenbuttel, “IC-compatible fabrication of linear variable optical filters for microspectrometer,” Procedia Chemistry 1(1), pp. 1143–1146 (2009).
[10] A. Emadi, H. Wu, G. De Graaf, P. Enoksson, J. H. Correia, and R. Wolffenbuttel, “Linear variable optical filter-based ultraviolet microspectrometer,” Applied Optics 51(19), pp. 4308–4315 (2012).
[11] A. Emadi, H. Wu, G. de Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “An UV linear variable optical filter-based micro-spectrometer,” Procedia Engineering 5, pp. 416–419 (2010).
[12] A. Emadi, Linear-variable optical filters for microspectrometer application, Ph.D. thesis (2010).

[13] A. Emadi, S. Grabarnik, H. Wu, G. de Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F.Wolffenbuttel, “Spectral measurement using IC-compatible linear variable optical filter,” Proc. SPIE 7716, 77162G (2010).
[14] A. Emadi, “Near- and mid-IR microspectrometers based on Linear-Variable Optical Filters,” Sensors, 2011 IEEE, pp. 424–427 (2011).
[15] L. Abel-Tiberini, F. Lemarquis, and M. Lequime, “Masking mechanisms applied to thin-film coatings for the manufacturing of linear variable filters for two-dimensional array detectors,” Applied Optics 47(30), pp. 5706–5714 (2008).
[16] A. Piegari, A. K. Sytchkova, J. Bulir, B. Harnisch, and A. Wuttig, “Thin-film filters for a high resolution miniaturized spectrometer,” Proc. SPIE 7101, 710113 (2008).
[17] A. Piegari and J. Bulir, “Variable narrow-band transmission filters with wide rejection band for spectrometry,”Applied Optics 45(16), pp. 3768–3773 (2006).
[18] A. Piegari, J. Bulir, and A. K. Sytchkova, “Variable transmission filters for spectrometry from space. 2. Fabrication process,”Applied Optics 47(13), pp. 121–126 (2008).
[19] G. Hass and R. E. Thun,“Physics of thin flim,” Vol.4, Academic Press. N. Y. (1967).
[20] 柯賢文,表面與薄膜處理技術,全華圖書, (2005)。
[21] 李正中,薄膜光學與鍍膜技術,藝軒圖書出版社, (1999)。
[22] S. M. Demsky and H. B. Ma, “Thin film evaporation on a curved surface, Microscale Thermophysical Engineering,” Microscale Thermophysical Engineering 8(3), pp. 285–299 (2004).
[23] E. B. Graper, “Distribution and apparent source geometry of electron-beam-heated evaporation sources,” Journal of Vacuum Science & Technology 10, pp. 100–103 (1973).
[24] 莊凱評,光學薄膜厚度均勻性之研究,國立中央大學光電科學研究所碩士論文 (2000)。
[25] 邱煥評,離子濺鍍膜厚均勻性之研究,國立中央大學光電科學研究所碩士論文 (2002)。
[26] L. Abel-Tiberini, F. Lemarquis, G. Marchand, L. Roussel, G. Albrand, and M. Lequime, “Manufacturing of linear variable filters with straight iso-thickness lines,” Proc. SPIE 5963, 59630B (2005).
[27] F. Villa and O. Pompa, “Emission pattern of a real vapor sources in high vacuum: an overview,” Applied Optics 38(4), pp. 695–703 (1999).
[28] 王惠民,利用電子束蒸鍍法沉積氧化鋁緩衝層以作為高頻氧化鋅薄膜表面聲波元件之應用,大同大學光電工程研究所碩士論文 (2007)。
[29] C. Lee, K. Chuang, and J. Wu, “Thickness distribution of thin films deposited by ion beam deposition,” in proceedings of Optical Interference Coatings, MB4 (2001).
[30] E. Hecht, Optics 4th ed. (Pearson, 2014).
[31] 章立佑,反射式微結構之平面聚焦特性分析與探討,國立台灣科技大學自動化及控制研究所碩士論文 (2010)。
[32] A. Semery, “Wedge filter imaging spectrometer,”in proceedings of the Sixth International Conference on Space Optics, Nederland, pp. 27–30 (2006).
[33] 林子閔,類人眼感測器之紅外線截止濾光片之特殊薄膜設計與製造, 國立虎尾科技大學光電與材料科技研究所碩士論文 (2007)。
[34] S. Jakobs and U. B. Schallenberg, “High-precision longpass filter arrays for miniature spectrometers,” Proc. SPIE 5250, pp. 663–669 (2004).
[35] http://oceanoptics.com/product/linear-variable-filters
[36] A. Piegari, and G. Emiliani, “Laser mirrors with variable reflected intensity and uniform phase shift:design process,” Applied Optics 32(28), pp. 5454–5461 (1993).
[37] A. Krasilnikova, A. iegari, M. Dami, L. Abel-Tiberini, F. Lemarquis, and M. Lequime, “Spatially resolved spectroscopy for non-uniform thin film coatings: comparison of two dedicated set-ups,” Proc. SPIE 5965, pp. 1–8 (2005).
[38] 吳駿逸,不同製程下以 Si 與SiO2 為起始材料所製鍍出的SiO2 薄膜特性研究,國立中央大學光電科學研究所博士論文 (2006)。
[39] 徐進成,雙離子束濺鍍光學薄膜之研究,國立中央大學光電科學研究所博士論文 (1997)。
[40] L. Pekker, “Using calibration tests for adjusting target uniformity masks,” Thin Solid Films 474(1), pp. 211–216 (2005).
[41] C. H. Ko, K. Y. Chang, and Y. M. Huang, “Theoretical modelling and experimental verification of gradient thickness function for thin film deposition of linear variable filter,” International Journal of Surface Science and Engineering, 9(2/3), pp.216-230 (2015).
[42] C. H. Ko, K. Y. Chang, and Y. M. Huang, “Analytical Modeling and Tolerance Analysis of a Linear Variable Filter for Spectral Order Sorting,” Optics Express, 23(4), pp.5102-5116 (2015).
[43] H. A. MacLeod, “Thin-film Optical Filters 4th ed, Taylor & Francis (2010).
[44] L. I. Epstein, “The design of optical filter”, Optical Society of America 42, pp. 806–810 (1952).
[45] E. Vireton, P. Ganau, J. M. Mackowski, C. Michel, L. Pinard, A. Remillieux, and P. Laprat, “SiO2-Ta2O5 sputtering yields: simulated and experimental results,” Nuclear Instruments and Methods in Physics Research Section B 95(1), pp. 34–40 (1995).

無法下載圖示 全文公開日期 2020/07/27 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE