簡易檢索 / 詳目顯示

研究生: 廖偉盛
Wei-Sheng Liao
論文名稱: 利用高導電性層狀MXene之缺陷負載鉑單原子以增強電催化產氫反應
Platinum Single-Atom on Defective and Highly- conductive Layered MXene for Enhanced Electrocatalytic Hydrogen Production
指導教授: 蘇威年
Wei-Nien Su
黃炳照
Bing Joe Hwang
蔡孟哲
Meng-Che Tsai
口試委員: 蘇威年
Wei-Nien Su
黃炳照
Bing Joe Hwang
蔡孟哲
Meng-Che Tsai
趙基揚
Chi-Yang Chao
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 108
中文關鍵詞: 二维過渡金屬碳化物/碳氮化物單原子觸媒電催化氫析出X光吸收光譜
外文關鍵詞: 2D transition metal carbide/nitride (MXene), X-ray absorption spectroscopy, single atom catalysts, electrocatalytic hydrogen evolution
相關次數: 點閱:253下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

為了解決目前石化燃料使用過度所造成的環境問題及能源危機,水分解所產生的氫氣 (H2) 作為能源,視為最理想的方案。但由於電解水需要消耗許多電能,且在電能傳輸過程中產生的熱能、線材中的電阻,會造成能量的損耗,導致氫氣的燃燒所放出的能量不會與消耗的電能相等,因此尋找良好的催化觸媒,便成為當務之急。
目前許多文獻金屬單原子觸媒載體,具有低導電性的缺點;本實驗以二维 (2D) 過渡金屬碳化物/碳氮化物 (MXene) 家族中的二維材料Ti3C2作為高導電載體,並利用非常簡易方式合成金屬單原子觸媒。透過掃描式電子顯微鏡 (Scanning electron microscope, SEM) 觀察到具有手風琴狀,並利用X光繞射分析 (X-ray diffraction, XRD)證明 (002) 晶面從9.5o往低角度位移至8.6o,層間距離從9.24 Å增加到10.2 Å,再施以超聲震盪距離會增加到14.4 Å,證明MXene薄片成功合成。由於超聲震盪後會將堆疊狀態剝離成薄片狀,造成更多的Ti表面暴露,並利用蝕刻過程中產生表面Ti空位作為吸附金屬離子位點,形成單原子觸媒 (Single atom catalysts, SACs),選擇吸附原子為Pt原子,以X光吸收光譜 (XAS) 並無觀察到Pt-Pt金屬鍵結,驗證金屬Pt形成單原子觸媒分散MXene結構中,另外也發現Pt4+被還原成Ptδ+形式存在於Ti空位中,再加以探討不同蝕刻時間所形成的Ti空位多寡,以利吸附更多以Pt原子作為活性位點降低水分解所需電位,目前純MXene對於hydrogen evolution reaction的過電位為0.62 V,附載Pt單原子後,最佳的效果為蝕刻48小時的MXene負載2 wt%的Pt單原子,其10 mA/cm2下overpotential及tafel slope 都具有最好的,分別的為77 mV和57 mV/dec,可以發現在0.1 M HClO4的環境中,經過24小時的穩定性測試,可以發現只衰退了0.5%。
我們利用簡易方法開發出MXene-PtSAC且負載量為2.2 wt%,利用此方法可以大量製造出Pt單原子觸媒且具有高導電性不必另外添加導電碳材。


Many metallic single-atom catalysts suffer from the poor conductivity of the molecular support. In this experiment, a highly conductive two-dimensional (2D) material called Ti3C2 from the family of transition metal carbides/nitrides (MXene) was used as a support material to prepare metal single-atom catalysts through a simple method. During the etching process, surface Ti vacancies were created, which are seen as the adsorption sites for enhanced loading of catalytic metal ions, thus allowing the formation of single-atom catalysts (SACs). The platinum (Pt) atom was chosen as the adsorbed species for the hydrogen evolution reaction. Scanning electron microscopy (SEM) observations revealed an accordion-like morphology, and X-ray diffraction (XRD) analysis confirmed a decrease in the diffraction angle of the (002) crystal plane from 9.5° to 8.6°, indicating an increase in interlayer spacing from 9.24 Å to 10.2 Å.
Further ultrasonic treatment increased the interlayer spacing to 14.4 Å, demonstrating the successful synthesis of MXene flakes. The ultrasonic treatment helped the flakes exfoliate and expose more interlayer Ti surfaces. X-ray absorption spectroscopy (XAS) revealed no observation of Pt-Pt metal bonding, confirming the formation of dispersed metal Pt as single atoms within the MXene structure. Additionally, it was found that Pt4+ was reduced to Ptδ+ and existed within the Ti vacancies. The abundant Ti vacancies formed at different etching times were further investigated and correlated with the adsorption of more Pt atoms as active sites, reducing the electrochemical potential required for water splitting. Currently, pure MXene exhibits an overpotential of 0.62 V for the hydrogen evolution reaction. However, it can be lowered to 0.2 V after loading Pt single atoms. The best performance was achieved by etching MXene for 48 hours and loading 2 wt% of Pt single atoms. The overpotential and Tafel slope at 10 mA/cm2 were 77 mV and 57 mV/dec, respectively. It was observed that after 24 hours of stability testing in a 0.1 M HClO4 environment, the degradation was only 0.5%.
We have developed a simple method to synthesize MXene-PtSAC with a loading amount of 2.2 wt% of Pt single atoms. This method allows for the mass production of Pt single-atom catalysts with high conductivity without additional conductive carbon materials.

摘要 V ABSTRACT VII 致謝 IX 目錄 XI 圖目錄 XIV 表目錄 XVIII 第1章 緒論 1 1.1 前言 1 1.2 全球暖化 1 1.2.1 甚麼是溫室效應? 1 1.2.2 溫室氣體的種類及影響 3 1.2.3 全球暖化的減緩及應對方向 4 1.3 以潔淨能源產氫 4 1.3.1 光電化學催化法 4 1.3.2 電催化法 6 1.4 研究動機和方向 7 第2章 文獻回顧 9 2.1 單原子觸媒介紹 (SINGLE ATOM CATALYSTS, SACS) 9 2.1.1 單原子觸媒的發展 9 2.1.2 單原子觸媒的特性 11 2.1.3 單原子觸媒的合成方式 13 2.1.4 單原子催化劑的表徵技術 18 2.2 二維過渡金屬碳/氮化物 (MXENE) 22 2.2.1 MXene的發展 22 2.2.2 用MXene作為載體合成SACs的優勢 23 2.3 MXENE應用於電化學之發展 26 2.3.1 MXene複合物催化劑 26 2.3.2 MXene單原子催化劑 27 2.4 氫析出電催化還原反應機制探討 30 2.5 ROADMAP 31 2.5.1 2011年MXene的發現 31 2.5.2 2013年MXene家族興起 32 2.5.3 2016年MXene作為高效率析氫電催化劑 33 2.5.4 MXene奈米複合物作為析氫電催化劑 34 2.5.5 MXene負載單原子作為析氫電催化劑 35 第3章 實驗方法及實驗儀器 37 3.1 實驗設備 37 3.2 實驗藥品 39 3.3 實驗步驟 40 3.3.1 觸媒合成 40 3.3.2 電化學電極製備 44 3.4 實驗儀器原理 45 3.4.1 高解析度場發射掃描式電子顯微鏡 (Field-Emission Scanning Electron Microscope;FE-SEM) 45 3.4.2 X光繞射分析 (X-ray diffraction, XRD) 46 3.4.3 感應耦合電漿原子發射光譜儀 (Inductively Coupled Plasma Optical Emission Spectrometer;ICP-OES) 46 3.4.4 X光光電子光譜 (X-ray photoelectron spectroscopy;XPS) 47 3.4.5 X光吸收光譜 (X-ray absorption spectroscopy;XAS) 47 3.5 電化學系統及測試 50 3.5.1 循環伏安法 (Cyclic voltammetry,;CV) 50 3.5.2 線性伏安法 (linear sweep voltammetry;LSV) 50 3.5.3 計時電流法 (Chronoamperometry;CA) 50 第4章 結果與討論 53 4.1 MXENE材料分析 53 4.1.1 MXene表面型態觀察 53 4.1.2 MAX和不同合成方法MXene 結晶性分析 56 4.1.3 X光吸收光譜 58 4.1.4 MXene合成PtSAC後結構分析 60 4.2 觸媒含量測定 68 4.2.1 ICP測定Pt含量 68 4.3 MXENE-PTSAC電化學曲線分析 69 4.3.1 電催化氫氣析出準備 69 4.3.2 氫氣析出效率分析 69 4.4 MXENE不同時長蝕刻分析 72 4.4.1 MXene不同時長蝕刻表面分析 72 4.4.2 MXene不同時長蝕刻Ti K-edge和R space變化 73 4.4.3 48MXene-PtSAC、96MXene-PtSAC電化學曲線分析 75 4.4.4 96MXene-PtSAC電化學曲線分析 77 4.4.5 統整各個時間蝕刻及負載量 79 4.5 長時間穩定性測試 80 4.6 反應機制推論 82 第5章 結論 83 第6章 未來展望 85 第7章 參考文獻 87

(1) Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414 (6861), 332-337. DOI: 10.1038/35104599.
(2) Yang, J.; Yu, Y.; Ma, T.; Zhang, C.; Wang, Q. Evolution of energy and metal demand driven by industrial revolutions and its trend analysis. CJPRE 2021, 19 (3), 256-264. DOI: https://doi.org/10.1016/j.cjpre.2021.12.028.
(3) Ganguly, P.; Harb, M.; Cao, Z.; Cavallo, L.; Breen, A.; Dervin, S.; Dionysiou, D. D.; Pillai, S. C. 2D Nanomaterials for Photocatalytic Hydrogen Production. ACS Energy Lett. 2019, 4 (7), 1687-1709. DOI: 10.1021/acsenergylett.9b00940.
(4) Singh, A. K.; Mathew, K.; Zhuang, H. L.; Hennig, R. G. Computational Screening of 2D Materials for Photocatalysis. J. Phys. Chem. Lett. 2015, 6 (6), 1087-1098. DOI: 10.1021/jz502646d.
(5) Yang, X.-F.; Wang, A.; Qiao, B.; Li, J.; Liu, J.; Zhang, T. Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis. Accounts of Chemical Research 2013, 46 (8), 1740-1748. DOI: 10.1021/ar300361m.
(6) Qiao, B.; Wang, A.; Yang, X.; Allard, L. F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3 (8), 634-641. DOI: 10.1038/nchem.1095.
(7) Cheng, N.; Zhang, L.; Doyle-Davis, K.; Sun, X. Single-Atom Catalysts: From Design to Application. EER 2019, 2 (4), 539-573. DOI: 10.1007/s41918-019-00050-6.
(8) Sarma, B. B.; Maurer, F.; Doronkin, D. E.; Grunwaldt, J.-D. Design of Single-Atom Catalysts and Tracking Their Fate Using Operando and Advanced X-ray Spectroscopic Tools. Chem. Rev. 2023, 123 (1), 379-444. DOI: 10.1021/acs.chemrev.2c00495.
(9) Wu, J.; Xiong, L.; Zhao, B.; Liu, M.; Huang, L. Densely Populated Single Atom Catalysts. Small Methods 2020, 4 (2), 1900540. DOI: https://doi.org/10.1002/smtd.201900540.
(10) Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Active Nonmetallic Au and Pt Species on Ceria-Based Water-Gas Shift Catalysts. Science 2003, 301 (5635), 935-938. DOI: 10.1126/science.1085721 (acccessed 2023/07/07).
(11) Wang, X.; Chen, X.; Thomas, A.; Fu, X.; Antonietti, M. Metal-Containing Carbon Nitride Compounds: A New Functional Organic–Metal Hybrid Material. Adv. Mater. Interfaces 2009, 21 (16), 1609-1612. DOI: https://doi.org/10.1002/adma.200802627.
(12) Li, X.; Bi, W.; Zhang, L.; Tao, S.; Chu, W.; Zhang, Q.; Luo, Y.; Wu, C.; Xie, Y. Single-Atom Pt as Co-Catalyst for Enhanced Photocatalytic H2 Evolution. Adv Mater 2016, 28 (12), 2427-2431. DOI: https://doi.org/10.1002/adma.201505281.
(13) Davis, M. E. Ordered porous materials for emerging applications. Nature 2002, 417 (6891), 813-821. DOI: 10.1038/nature00785.
(14) Masoumifard, N.; Guillet-Nicolas, R.; Kleitz, F. Synthesis of Engineered Zeolitic Materials: From Classical Zeolites to Hierarchical Core–Shell Materials. Adv Mater 2018, 30 (16), 1704439. DOI: https://doi.org/10.1002/adma.201704439.
(15) Ortalan, V.; Uzun, A.; Gates, B. C.; Browning, N. D. Direct imaging of single metal atoms and clusters in the pores of dealuminated HY zeolite. Nat. Nanotechnol. 2010, 5 (7), 506-510. DOI: 10.1038/nnano.2010.92.
(16) Jiao, L.; Jiang, H.-L. Metal-Organic-Framework-Based Single-Atom Catalysts for Energy Applications. Chem 2019, 5 (4), 786-804. DOI: https://doi.org/10.1016/j.chempr.2018.12.011.
(17) Zheng, Y.; Qiao, S.-Z. Metal-organic framework assisted synthesis of single-atom catalysts for energy applications. Natl. Sci. Rev. 2018, 5 (5), 626-627. DOI: 10.1093/nsr/nwy010 (acccessed 7/7/2023).
(18) Jiang, R.; Li, L.; Sheng, T.; Hu, G.; Chen, Y.; Wang, L. Edge-Site Engineering of Atomically Dispersed Fe–N4 by Selective C–N Bond Cleavage for Enhanced Oxygen Reduction Reaction Activities. J. Am. Chem. Soc. 2018, 140 (37), 11594-11598. DOI: 10.1021/jacs.8b07294.
(19) Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. PNAS 2006, 103 (27), 10186-10191. DOI: doi:10.1073/pnas.0602439103.
(20) Chen, Y.; Ji, S.; Wang, Y.; Dong, J.; Chen, W.; Li, Z.; Shen, R.; Zheng, L.; Zhuang, Z.; Wang, D.; et al. Isolated Single Iron Atoms Anchored on N-Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 2017, 56 (24), 6937-6941. DOI: https://doi.org/10.1002/anie.201702473.
(21) Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, Crystalline, Covalent Organic Frameworks. Science 2005, 310 (5751), 1166-1170. DOI: doi:10.1126/science.1120411.
(22) Zhong, W.; Sa, R.; Li, L.; He, Y.; Li, L.; Bi, J.; Zhuang, Z.; Yu, Y.; Zou, Z. A Covalent Organic Framework Bearing Single Ni Sites as a Synergistic Photocatalyst for Selective Photoreduction of CO2 to CO. J. Am. Chem. Soc. 2019, 141 (18), 7615-7621. DOI: 10.1021/jacs.9b02997.
(23) Hoffman, A. S.; Fang, C.-Y.; Gates, B. C. Homogeneity of Surface Sites in Supported Single-Site Metal Catalysts: Assessment with Band Widths of Metal Carbonyl Infrared Spectrum. J. Phys. Chem. Lett. 2016, 7 (19), 3854-3860. DOI: 10.1021/acs.jpclett.6b01825.
(24) Weng, M.; Zhu, Q.; Wang, A.; Liu, G.; Huang, H. A new type of SnO2@β-Fe(Zr)OOH hollow nanosphere as a bifunctional adsorbent for removing nitrate from water: kinetics, isotherm, and thermodynamic studies. J. Mater. Sci. 2020, 55 (33), 15797-15812. DOI: 10.1007/s10853-020-05142-z.
(25) Ding, S.; Guo, Y.; Hülsey, M. J.; Zhang, B.; Asakura, H.; Liu, L.; Han, Y.; Gao, M.; Hasegawa, J.-y.; Qiao, B.; et al. Electrostatic Stabilization of Single-Atom Catalysts by Ionic Liquids. Chem 2019, 5 (12), 3207-3219. DOI: https://doi.org/10.1016/j.chempr.2019.10.007.
(26) de la Torre, G.; Claessens, C. G.; Torres, T. Phthalocyanines: old dyes, new materials. Putting color in nanotechnology. ChemComm 2007, (20), 2000-2015, 10.1039/B614234F. DOI: 10.1039/B614234F.
(27) Bottari, G.; de la Torre, G.; Guldi, D. M.; Torres, T. Covalent and Noncovalent Phthalocyanine−Carbon Nanostructure Systems: Synthesis, Photoinduced Electron Transfer, and Application to Molecular Photovoltaics. Chem. Rev. 2010, 110 (11), 6768-6816. DOI: 10.1021/cr900254z.
(28) Ogunsipe, A.; Chen, J.-Y.; Nyokong, T. Photophysical and photochemical studies of zinc(ii) phthalocyanine derivatives—effects of substituents and solvents. New J. Chem. 2004, 28 (7), 822-827, 10.1039/B315319C. DOI: 10.1039/B315319C.
(29) Gao, H.; Yu, R.; Ma, Z.; Gong, Y.; Zhao, B.; Lv, Q.; Tan, Z. a. Recent advances of organometallic complexes in emerging photovoltaics. J. Polym. Sci. 2022, 60 (6), 865-916, https://doi.org/10.1002/pol.20210592. DOI: https://doi.org/10.1002/pol.20210592 (acccessed 07/10/2023).
(30) Qiu, H.-J.; Ito, Y.; Cong, W.; Tan, Y.; Liu, P.; Hirata, A.; Fujita, T.; Tang, Z.; Chen, M. Nanoporous Graphene with Single-Atom Nickel Dopants: An Efficient and Stable Catalyst for Electrochemical Hydrogen Production. Angew. Chem. Int. Ed. 2015, 54 (47), 14031-14035. DOI: https://doi.org/10.1002/anie.201507381.
(31) Singh, J.; Lamberti, C.; van Bokhoven, J. A. Advanced X-ray absorption and emission spectroscopy: in situ catalytic studies. Chem. Soc. Rev. 2010, 39 (12), 4754-4766, 10.1039/C0CS00054J. DOI: 10.1039/C0CS00054J.
(32) Newville, M. Fundamentals of XAFS. Rev. Mineral. Geochem 2014, 78 (1), 33-74. DOI: 10.2138/rmg.2014.78.2 (acccessed 7/10/2023).
(33) Wang, L.; Zhang, S.; Zhu, Y.; Patlolla, A.; Shan, J.; Yoshida, H.; Takeda, S.; Frenkel, A. I.; Tao, F. Catalysis and In Situ Studies of Rh1/Co3O4 Nanorods in Reduction of NO with H2. ACS Catal. 2013, 3 (5), 1011-1019. DOI: 10.1021/cs300816u.
(34) Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011, 23 (37), 4248-4253. DOI: https://doi.org/10.1002/adma.201102306.
(35) Verma, C.; Zehra, S.; Aslam, R.; Aslam, J.; Quraishi, M. A.; Mobin, M. MXenes as Emerging 2D Materials for Anticorrosive Application: Challenges and Opportunities. Adv. Mater. Interfaces 2022, 9 (28), 2200579. DOI: https://doi.org/10.1002/admi.202200579.
(36) Gogotsi, Y.; Anasori, B. The Rise of MXenes. ACS Nano 2019, 13 (8), 8491-8494. DOI: 10.1021/acsnano.9b06394.
(37) Zhang, C.; Ma, Y.; Zhang, X.; Abdolhosseinzadeh, S.; Sheng, H.; Lan, W.; Pakdel, A.; Heier, J.; Nüesch, F. Two-Dimensional Transition Metal Carbides and Nitrides (MXenes): Synthesis, Properties, and Electrochemical Energy Storage Applications. Energy Environ. Mater. 2020, 3 (1), 29-55. DOI: https://doi.org/10.1002/eem2.12058.
(38) Feng, A.; Yu, Y.; Jiang, F.; Wang, Y.; Mi, L.; Yu, Y.; Song, L. Fabrication and thermal stability of NH4HF2-etched Ti3C2 MXene. Ceram. Int. 2017, 43 (8), 6322-6328. DOI: https://doi.org/10.1016/j.ceramint.2017.02.039.
(39) Ghidiu, M.; Lukatskaya, M. R.; Zhao, M.-Q.; Gogotsi, Y.; Barsoum, M. W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 2014, 516 (7529), 78-81. DOI: 10.1038/nature13970.
(40) Urbankowski, P.; Anasori, B.; Makaryan, T.; Er, D.; Kota, S.; Walsh, P. L.; Zhao, M.; Shenoy, V. B.; Barsoum, M. W.; Gogotsi, Y. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 2016, 8 (22), 11385-11391, 10.1039/C6NR02253G. DOI: 10.1039/C6NR02253G.
(41) Xiao, J.; Zhao, J.; Ma, X.; Li, L.; Su, H.; Zhang, X.; Gao, H. One-step synthesis Nb2CTx MXene with excellent lithium-ion storage capacity. J. Alloys Compd. 2021, 889, 161542. DOI: https://doi.org/10.1016/j.jallcom.2021.161542.
(42) Li, T.; Yao, L.; Liu, Q.; Gu, J.; Luo, R.; Li, J.; Yan, X.; Wang, W.; Liu, P.; Chen, B.; et al. Fluorine-Free Synthesis of High-Purity Ti3C2Tx (T=OH, O) via Alkali Treatment. Angew. Chem. Int. Ed. 2018, 57 (21), 6115-6119. DOI: https://doi.org/10.1002/anie.201800887.
(43) Huang, L.; Ai, L.; Wang, M.; Jiang, J.; Wang, S. Hierarchical MoS2 nanosheets integrated Ti3C2 MXenes for electrocatalytic hydrogen evolution. Int. J. Hydrog. Energy 2019, 44 (2), 965-976. DOI: https://doi.org/10.1016/j.ijhydene.2018.11.084.
(44) Yu, M.; Wang, Z.; Liu, J.; Sun, F.; Yang, P.; Qiu, J. A hierarchically porous and hydrophilic 3D nickel–iron/MXene electrode for accelerating oxygen and hydrogen evolution at high current densities. Nano Energy 2019, 63, 103880. DOI: https://doi.org/10.1016/j.nanoen.2019.103880.
(45) Qi, M.-Y.; Lin, Q.; Tang, Z.-R.; Xu, Y.-J. Photoredox coupling of benzyl alcohol oxidation with CO2 reduction over CdS/TiO2 heterostructure under visible light irradiation. Appl. Catal. B: Environ. 2022, 307, 121158. DOI: https://doi.org/10.1016/j.apcatb.2022.121158.
(46) Zhao, D.; Chen, Z.; Yang, W.; Liu, S.; Zhang, X.; Yu, Y.; Cheong, W.-C.; Zheng, L.; Ren, F.; Ying, G.; et al. MXene (Ti3C2) Vacancy-Confined Single-Atom Catalyst for Efficient Functionalization of CO2. J. Am. Chem. Soc. 2019, 141 (9), 4086-4093. DOI: 10.1021/jacs.8b13579.
(47) Bai, X.; Guan, J. Applications of MXene-Based Single-Atom Catalysts. Small Structures n/a (n/a), 2200354. DOI: https://doi.org/10.1002/sstr.202200354.
(48) Solomon, G.; Mazzaro, R.; You, S.; Natile, M. M.; Morandi, V.; Concina, I.; Vomiero, A. Ag2S/MoS2 Nanocomposites Anchored on Reduced Graphene Oxide: Fast Interfacial Charge Transfer for Hydrogen Evolution Reaction. ACS Appl Mater Interfaces 2019, 11 (25), 22380-22389. DOI: 10.1021/acsami.9b05086.
(49) Dunklin, J. R.; Zhang, H.; Yang, Y.; Liu, J.; van de Lagemaat, J. Dynamics of Photocatalytic Hydrogen Production in Aqueous Dispersions of Monolayer-Rich Tungsten Disulfide. ACS Energy Lett. 2018, 3 (9), 2223-2229. DOI: 10.1021/acsenergylett.8b01287.
(50) Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-Dimensional Transition Metal Carbides. ACS Nano 2012, 6 (2), 1322-1331. DOI: 10.1021/nn204153h.
(51) Seh, Z. W.; Fredrickson, K. D.; Anasori, B.; Kibsgaard, J.; Strickler, A. L.; Lukatskaya, M. R.; Gogotsi, Y.; Jaramillo, T. F.; Vojvodic, A. Two-Dimensional Molybdenum Carbide (MXene) as an Efficient Electrocatalyst for Hydrogen Evolution. ACS Energy Lett. 2016, 1 (3), 589-594. DOI: 10.1021/acsenergylett.6b00247.
(52) Lim, K. R. G.; Handoko, A. D.; Johnson, L. R.; Meng, X.; Lin, M.; Subramanian, G. S.; Anasori, B.; Gogotsi, Y.; Vojvodic, A.; Seh, Z. W. 2H-MoS2 on Mo2CTx MXene Nanohybrid for Efficient and Durable Electrocatalytic Hydrogen Evolution. ACS Nano 2020, 14 (11), 16140-16155. DOI: 10.1021/acsnano.0c08671.
(53) Zhao, X.; Zheng, X.; Lu, Q.; Li, Y.; Xiao, F.; Tang, B.; Wang, S.; Yu, D. Y. W.; Rogach, A. L. Electrocatalytic enhancement mechanism of cobalt single atoms anchored on different MXene substrates in oxygen and hydrogen evolution reactions. EcoMat 2023, 5 (2), e12293. DOI: https://doi.org/10.1002/eom2.12293.

QR CODE