簡易檢索 / 詳目顯示

研究生: 馬啟唐
Chi-tang Ma
論文名稱: 交錯式雙層透鏡陣列應用於自然光照明系統之靜態式集光器
Design of Static Solar Concentrator with Interlaced Double-Layer Lens Arrays for Natural Light Illumination System
指導教授: 黃忠偉
Jong-Woei Whang
口試委員: 陳怡永
none
吳錦銓
none
陳鴻興
Hung-Shing Chen
溫照華
Chao-Hua Wen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 49
中文關鍵詞: 透鏡陣列半球型集光器導光管照明
外文關鍵詞: Lens array, Hemispherical concentrator, Light pipe, Illumination
相關次數: 點閱:215下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,環保意識抬頭,綠能產業在全世界越來越被重視。各國產業與學界先進為了健康照明及節約能源,設計出能夠將太陽光導入室內做為照明用的技術,稱為【自然光導光照明系統】。
    本文採用透鏡式之太陽集光器來實現自然光導光的目的。透鏡式集光器有高聚光比的特性,但透鏡的太陽光入射角度的容忍度範圍很小,若是平行光相對於透鏡光軸有一傾斜角度,聚焦光點將偏移直射焦點許多,無法將光線導入至導光管中傳播,所以透鏡式太陽集光器通常會搭配太陽追蹤系統,使光線在日照時間內平行透鏡光軸入射。
    因此我們提供一種新型結構的靜態式集光器,設計出以導光管中心為圓心,導光管上方一固定距離與固定角度排列多個交錯式的雙層透鏡成半圓弧狀,並進一步優化雙層透鏡成非球面透鏡,使每個第一層透鏡與第二層透鏡負責匯集不同時刻的太陽光,使不同角度的光線經過兩層透鏡後能夠有效的偏折至導光管入光面。
    我們參考台灣台北的太陽資訊,包括夏至、春分、秋分及冬至,將集光器向南傾斜兩種角度分別對準夏至與春秋分,模擬集光器與只有導光管收光能力之比較。根據模擬結果,此集光器在日照時間內有穩定的光通量輸出。


    In recent years, due to the awareness of environmental protection, the use of green energy gets more and more attention around the world. Industry and academia focus on the use of sunlight to provide indoor lighting and save energy.
    One of the structures of solar concentrator is using lens to collect light, which features a high concentration ratio. But the acceptance of incident light angle of lens-type concentrator is quite small. If there is a tilted angle θ between parallel light and optical axis of lens, the focal point shifts from the original position and cannot be guided to light pipe. So the lens-type concentrator usually goes with dynamic sun tracking system to make the optical axis of lens parallel sunlight.
    Therefore, we propose a novel static solar concentrator without high-cost sun tracking system, which contains collection and transmission parts; the collection part is the array of interlaced two-layer lenses in semi-circular arrangement and two-layer lenses comprise the first-layer lens at the top and the second-layer lens at the bottom; the transmission part is one acrylic light pipe. Furthermore, we optimize the aspheric coefficients of lens. Each first and second-layer lens is responsible for collecting sunlight at corresponding time. So sunlight with different incident angles in daytime passes through two-layer lenses that refracted to light pipe effectively.
    We simulate the concentrating performance of the concentrator and only light pipe under real solar radiation in the summer solstice, vernal equinox, and winter solstice in Taipei city, Taiwan. According to the simulation results, the concentrator in this paper can provide steady luminous flux in daytime for kinds of lighting application.

    第一章緒論1 1.1 研究背景與動機1 1.2 研究方法2 第二章太陽光照明系統介紹3 2.1 基本照明單位量3 2.1.1光通量 (Luminous Flux, Φ)3 2.1.2 光強度 (Luminous Intensity, I)3 2.1.3 照度(Illuminance, E)4 2.1.4 輝度(Luminance, L)5 2.1.5 輻射度學與光度學6 2.2 幾何光學原理7 2.2.1 司乃爾定律 (Snell’s Law)7 2.2.2 全反射 (Total internal reflection)8 2.2.3 集光比定義9 2.2.4 光展量定理10 2.3 透鏡相關基本理論12 2.3.1 近軸理論12 2.3.2 透鏡成像公式12 2.3.3 非球面數學表達式14 2.4 既有太陽光照明系統15 2.4.1 遮蔽照明15 2.4.2 太陽能集光器系統18 第三章雙層透鏡陣列設計概念23 3.1 數學模型推導23 3.1.1 單層透鏡模型23 3.1.2 雙層透鏡模型25 3.2 集光器設計與模擬28 3.2.1 透鏡設計28 3.2.2 雙層透鏡陣列29 第四章模擬結果與分析31 4.1 入射角度對效率分析31 4.2太陽資訊對效率分析35 4.2.1 日照資訊35 4.2.2 太陽光入射角度轉換關於太陽位置與集光器傾斜角度40 4.2.3 引入日照資訊模擬集光器之收光能量43 第五章結論與未來展望49 5.1 結論49 5.2 未來展望49

    1.A. Rosemann, M. Mossman, L. Whitehead, “ Development of a cost-effective solar illumination system to bring natural light into the building core, ” Solar Energy, Vol. 82, pp. 302-310 (2008)
    2.Kischkoweit-Lopin, M., “ An overview of daylighting systems, ” Solar Energy, Vol. 73, No. 2, pp. 77-82 (2002)
    3.Jean, L.S., Gilles, C., “ Anidolic daylighting systems, ” Solar Energy, Vol. 73, No. 2, pp. 123-135 (2002)
    4.David, J., Tariq, M., Jorge, K., “ A design tool for predicting the performances of light pipes, ” Energy and buildings, Vol. 37, pp. 485-492 (2005)
    5.David, J., Tariq, M., “ Modelling light-pipe performances—a natural daylighting solution, ” Building and Environment, Vol. 38, pp. 965-972 (2003)
    6.G. Oakley, S. B. Riffat, L. Shao, “ Daylight performance of lightpipes, ” Solar Energy, Vol. 69, No. 2, pp. 89-98 (2000)
    7.L. C. Maxey, “ Flexible sunlight — the history and progress of hybrid solar lighting, ” Emerging Environmental Technologies, pp. 83-104 (2008)
    8.Whang, A.J.-W, Wang, C.-C., Chen, Y.-Y., “ Design of cascadable optical unit to compress light for light transmission used for indoor illumination, ” Renewable Energy, Vol. 34, No. 10, pp. 2280-2295 (2009)
    9.Whang, A.J.-W., Chen, Y.-Y., Wu, B.-Y., “ Innovative design of Cassegrain solar concentrator system for indoor illumination utilizing chromatic aberration to filter out ultraviolet and infrared in sunlight, ”. Solar Energy Vol. 83, pp. 1115-1122 (2009)
    10.Yang, S.-H., Chen, Y.-Y., Whang, J.-W., “ Using prismatic structure and brightness enhancement film to design cascadable unit of static solar concentrator in natural light guiding system, ” Proc. SPIE, Santiago, USA, pp. 7423, 74230J (2009)
    11.Maruyama, T., Osako, S., “ Wedge-shaped light concentrator using total internal reflection, ” Solar Energy Materials & Solar Cells, Vol. 57, pp. 75-83 (1999)
    12.Winston, R., Minano, J.C., et al., Eds., Nonimaging Optics, Elsevier (2004)
    13.Eugene Hecht, Optics, Addison Wesley, 4th ed. (2002)
    14.耿繼業、何建娃,幾何光學,全華圖書股份有限公司,台北,2009年
    15.Himawari Solar Lighting System La Foret Engineering Co., Ltd. : http://www.jato-it.com/himawari/technology_1.php
    16.訊技科技,OSLO快速學習手冊,五南圖書出版股份有限公司,台北,2007年
    17.誠鐿科技,非成像光學系統模擬設計,五南圖書出版股份有限公司,台北,2007年
    18.黃瑋,「應用於室內照明之自然導光拋物體集光器設計」,碩士論文,國立台灣科技大學,台北 (2008)。

    無法下載圖示 全文公開日期 2014/07/04 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE