簡易檢索 / 詳目顯示

研究生: 樊溫詔
WEN-CHAO Fan
論文名稱: 修正式TRIZ應用於伺服機殼之固態式硬碟固定架組裝創新設計改善方案研究
A study of application of modified TRIZ to innovative design of improvement project of solid-state drive tray assembly of server chassis
指導教授: 林榮慶
Zone-Ching Lin
口試委員: 許覺良
JUE-LIANG XU
傅光華
Kuang-Hua Fuh
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 138
中文關鍵詞: 有限元素分析伺服系統大變形理論TRIZ理論
外文關鍵詞: finite element analysis, server system, large deformation theory, TRIZ theory
相關次數: 點閱:188下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

摘要
由於硬碟固定架在伺服機殼為重要之結構設計一環節,因伺服機殼與硬碟固定架及硬碟常做快速組裝故在過程中一併有滑動狀態問題,衍生裝配不容易,滑動不順暢甚而因摩擦導致鐵屑掉落情況發生。本文針對目前現有的固態式硬碟產品用修正式TRIZ的創新改善流程設計新的固態式硬碟固定架,主要為就伺服機殼之組裝、滑動進行創新結構改善,並在與固態式硬碟固定架與固態式硬碟裝配時的凸緣成型所用的模具進行改善,使所得之凸緣有較佳的成形結構。
原有的將伺服器機殼之固態式硬碟固定架的組裝作業方式是在與伺服器系統之雙邊間隔板與彈片結合作為開關固定,所以開啟伺服器系統上蓋後,使用者可以下壓彈片後往前推動固態式硬碟抽取盒作為脫離於伺服器底座之方法。為進一步改善其組裝的方便性,本文應用修正式TRIZ的發明創新法則,此次的主要改善重點在於將其內部固態式硬碟固定架分拆結構設計,待進入修正式TRIZ系統介面後,首先選擇欲改善的參數群組為「物質數量」之「23.物質之耗費」,由分析後所列出之建議發明法則順序,逐一思考可能解決的方向,本例選擇以「3.局部特性」發明法則為考慮方向,我們採用發明法則「3.局部特性」的「a.將一物體或外在環境(動作)由相同成分組成的結構轉變成由不同成分組成的結構」。選定發明法則以後,由系統顯示之不欲惡化群組順序依次考慮,考慮到組合時之拆卸便利性,所以選定「物體壽命」群組之「15.移動物體之耐久性」為本例不欲惡化參數。故建議可將動作一分為二,將滑動轉軸與板金料件兩者與固態式硬碟固定架外框做一結合,將這項動作變為當下壓板金時藉滑動轉軸旋轉之功能達到解鎖及往前推動之助力的創新結構。
此外一般伺服器機殼擺放固態式硬碟固定架在做滑動過程時,因板金與板金之間的摩擦常造成鐵屑的生成。故本研究用修正式TRIZ發明法則再進一步改善。此次的主要改善重點在於將內部固態式硬碟固定架當往外推出後須如何滑動才為順暢無阻礙。本文選擇以發明法則「3.局部特性」的「a.將一物體或外在環境(動作)由相同成分組成的結構轉變成由不同成分組成的結構」為改善方向,其建議可將其一部分材質做改變,因此本研究尋找兩款材質分別為PC與Silicone rubber,材質Silicone rubber表面粗度為3μ-18μ厚度為0.13mm;材質PC表面粗度為0.38μ厚度為0.13mm,作為滑動結合,又因PC表面粗度較小,故選PC會比Silicone rubber材質更能將這項動作變為更為滑順,且能避免鐵削產生後果。
最後固態式硬碟與固態式硬碟固定架在組裝過程中會有凸緣結構,因現有產品凸緣的引伸結構沒有壓料板設計,因此現有的凸緣其良率較低,且凸緣的底部的凸起邊緣有時會較大,導致固態式硬碟抽取有時會有不順,影響組裝方便性。故本研究另外設計新的凸緣成型引伸模具,以改善此問題。因此本文再應用修正式TRIZ的發明方法,本文選擇發明法則「9.預先之反作用」的「a.事先給予反張力補償物體上過度與不想要的應力」為考慮方向。選定發明法則以後,依此本文在引伸模具設計上加上壓料板,本文改用有壓料板的模具設計在CAD軟體先建構出一個模具引伸成型模具,在模具引伸凸緣的動作中,本文用Abaqus模擬軟體模擬無壓料板模具與有壓料板模具之引伸過程間的變化。經Abaqus模擬結果發現採用有壓料板的模具,與無壓料板的模具的引伸結果相比較,有壓料版的模具在引伸過程的下壓力較小,產生的凸緣在引伸底部側邊有較小的應力,引伸過程的凸緣壁厚較薄,且產生的凸緣底部的側邊有較小的凸起,因此可產生較佳的凸緣結構。

關鍵字: 有限元素分析、伺服系統、大變形理論、TRIZ理論


Abstract
Hard disk drive (HDD) tray is an important link to structural design of server chassis. Since server chassis always conducts fast assembly with HDD tray and hard drive, there is problem of sliding state in the process, thus deriving the circumstances of difficult assembly, unsmooth sliding, and even falling of iron filings due to friction. Focusing on the existing solid-state drive (SSD) product, the paper uses the innovative improvement procedure of modified TRIZ to design new SSD tray, mainly making innovative structural improvement of the assembly and sliding of server chassis. The paper also improves the die for flange forming during assembly of SSD tray and SSD in order to let the acquired flange have a better forming structure.
The original operation way of SSD tray assembly of server chassis is to combine bilateral partition of server system with shell fragment to serve as switch fixer. Therefore, after the upper cover of server system is opened, user can take the method of pressing down the shell fragment and pushing forward the SSD removable box to detach it from the server bottom case. In order to further improve the convenience of its assembly, the paper applies the innovative invention rules of modified TRIZ. The main focus of improvement this time is on structural design of dismantling of its internal SSD tray. After entering the interface of modified TRIZ system, the paper firstly selects “quantity of substances” under “23. Loss of substance” cluster as the parameter group to be improved.
After analysis, the suggested order of invention rules is listed out. We can think about the possible directions of solutions one by one. For the case of the paper, the invention rule “3. local quality” is selected as a consideration direction. We employ “a. provide transition from a homogeneous structure of an object or outside environment (outside action) to a heteroge neous structure.” under “3. local quality”. After invention rule is selected, the order of non-worsening goups appeared in the system is considered. As the convenience of dismantling during assembly is considered, “15. durability of moving object” under “life of object” is selected as a non-worsening parameter of this case.
Therefore, it is suggested that the movement is divided into two. Combine the rotating shaft for sliding and sheet metal material with the SSD frame, and change this movement to be an innovative structure that helps achieve unlocking and forward pushing through sliding and rotation functions of rotating shaft during downward pressing of sheet metal.
Besides, when general server chassis is placed with SSD tray for the sliding process, the friction between sheet metals would always generate iron filings. Therefore, the paper uses modified TRIZ invention rules to make further improvement. The main focus of improvement this time is to find out how to make sliding smooth and obstacle-free after the internal SSD removable box is pushed outward. The paper selects “a. provide transition from a homogeneous structure of an object or outside environment (outside action) to a heteroge neous structure.” under the invention rule “3. local quality” as the improvement direction.
It is suggested that a part of the material can be changed. Therefore, the paper finds out two materials: polycarbonate (PC) and silicone rubber. For silicone rubber, its surface roughness is 3μ-18μ and its thickness is 0.13mm; and for PC, its surface roughness is 0.38μ and its thickness is 0.13mm. They serve as a sliding combination. Since PC has a smaller surface roughness, PC is selected as it would give smoother sliding movement than the material of silicone rubber, and can avoid the outcome of generation of iron filings.
Finally, SSD and SSD tray would have flange structure in the assembly process. Since the extension structure of the existing product flange does not have the design of blank holder, the yield rate of the existing flange is lower, and the protruding edge at the bottom of flange is sometimes greater, thus leading to occasional unsmooth removal of SSD and affecting the convenience of assembly. In order to improve these problems, the paper additionally designs a new extension die for flange forming. Hence, the paper applies again the modified TRIZ invention method. The paper selects “a. if it is necessary to carry out some action, consider a counteraction in advance.” under the invention rule “9. Preliminary anti-action” as the consideration direction. After the invention rule is selected, based on this, the paper adds blank holder to the design of extension die. The paper changes to use the design of die with blank holder and firstly establishes in CAD software a die extension forming die.
In the movement of die extension flange, the paper uses Abaqus simulation software to simulate the change of extension process between the die without blank holder and the die with blank holder. As found in the results of simulation by Abaqus, comparing the extension results between the die with blank holder and the die without blank holder, in the extension process the die with blank holder gives a smaller downward force, and the flange produced has smaller stress at the lateral side at the bottom of extension. In the extension process, the flange wall thickness is thinner. At the lateral side at the bottom of the produced flange there is s smaller protruding edge, so that a better flange structure can be produced.

Keywords: finite element analysis, server system, large deformation theory, TRIZ theory

目錄 摘要I AbstractIII 誌謝VI 目錄VII 圖目錄X 表目錄XIV 第一章 緒論1 1.1前言1 1.2 研究動機與目的1 1.3 文獻回顧3 1.3.1 TRIZ之文獻3 1.3.2引伸加工之文獻5 1.4 本文架構11 第二章 材料性質與拉伸試驗實驗步驟及實驗結果13 2.1 材料選用13 2.2拉伸試驗操作模式14 2.2.1拉伸試驗設備介紹14 2.2.2拉伸試驗之試片製作16 2.2.3拉伸試驗之步驟17 2.3拉伸試驗理論及公式18 2.3.1工程應力與工程應變18 2.3.2真應力與真應變19 2.3.3塑流方程式19 2.4迴歸方程式20 2.4.1最小平方法(Least square method)矩陣20 2.4.2迴歸方程式之重要指標22 2.5拉伸實驗之結果24 2.5.2 工程應力與工程應變計算28 2.5.3 真實應力與真實應變之計算30 2.5.4 真應變-應力與工程應變-應力曲線之比31 2.5.4 塑流方程式之計算33 2.5.5 迴歸分析之計算34 第三章 修正式TRIZ分群法之介紹40 3.1 TRIZ源起40 3.2 TRIZ理論基礎40 3.3 TRIZ解題方法42 3.3.1 矛盾衝突矩陣法43 3.3.2 矛盾矩陣表與創新法則45 3.4 修正式TRIZ分群法介紹48 3.4.1 修正式TRIZ判讀流程49 第四章 探討伺服機殼與固態式硬碟固定架結合之創新52 4.1 伺服器與固態式硬碟固定架需求及工程特性52 4.2 固態式硬碟固定架產品分析54 4.3 利用修正式TRIZ在固態式硬碟固定架之拆卸技術改良57 4.4 利用修正式TRIZ在固態式硬碟抽取盒之滑動技術改良64 4.5 利用修正式TRIZ在固態式硬碟固定架之凸緣成型製程術改良68 第五章 有限元素法75 5.1 基本必要的假設75 5.2 有限變形之應變與應變率75 5.3 有限變形之應力與應力率78 5.4 有限變形之 Updated Largrangian Formulation83 5.5 材料之彈塑性構成關係式86 第六章Abaqus有限元素軟體簡介91 6.1 簡介91 6.2 虛功原理之離散化93 6.3退化殼元素 ( degenerated shellelement )94 6.4 不同積分法則推導退化殼元素之剛性矩陣97 6.5摩擦處理98 6.6 廣義 法之增量步驟的計算101 6.7 三維曲度修正方程式104 6.8 除荷之設定105 6.9 有限元素軟體簡介106 6.9.1 有限元素軟體分析系統107 6.9.2 Abaqus 軟體之介紹109 6.9.3 有限元素模型之基本假設110 第七章 無壓料板及有壓料板之凸緣成形模擬分析結果111 7.1 Abaqus 模擬分析有無壓料板之設計前規劃111 7.2分析步驟118 7.2.1建立實體模型及定義材料118 7.2.2建立分析步驟124 7.2.3網格劃分125 7.2.4模擬計算126 7.2.5後處理126 7.3 凸緣引伸成型當無壓料板時之沖頭負荷之模擬結果126 7.4 凸緣引伸成型當有壓料板時之沖頭負荷之模擬結果128 7.5 凸緣引伸成型當無壓料板及有壓料板之結果分析131 第八章 結論133 8.1 結論133 8.2 未來與展望134 參考文獻135

參考文獻
[1]. 陳聿英,敏博Flash事業處產品經理,” 迎接PCIe SSD新趨
勢U.2/M.2介面整合時代來臨” (2017)。
[2]. Maron, M. E., “Automatic Indexing: An Experimental Inquiry ”, Journal of the ACM, Vol.8,Issue 3, pp.404-417 (1961).
[3]. Borko, H. and Bernick, M., “Automatic Document Classification”, Journal of the ACM, Vol.10, Issue 2, pp.151-162 (1963).
[4]. Kwok, K.L., “The Use of Title and Cited Titles as Document Representation for Automatic Classification”, Information and Management, Vol.11, Issue 8-12, pp.201-206 (1975).
[5]. Goldfire InnovatorTM, http://www.invention machine.com/index.htm
[6]. The trial version of CREAX Innovation Suite 3.1, http://www.creax.com/
[7]. TriSolver4.net Software, http://www.trisolver.com/
[8]. Invention Tool, http://www.triz.net.cn/
[9]. 檀潤華,「產品創新設計若干問題研究進展」,機械工程學報,第二十九卷,第九期,第11~16頁,民國九十二年。
[10]. 朱晏樟,「整合TRIZ與功能分析之設計方法研究」,成功大學機械工程學系碩士論文,民國九十二年。
[11]. 吳立仁,產品多樣化設計方法研究,交通大學機械工程研究所博士論文,民國九十一年。
[12]. 陳佳麟,「專利產品設計方法與策略整合之研究」,交通大學機械工程研究所博士論文,民國九十一年。
[13]. Jung, H. S., Hoon, H. and Kimb, S. H.,“A simulation-based design parameter study in the stamping process of an automotive member”, Journal of Materials Processing Technology, Vol.189, Issue 1-3, pp.450–458 (2007).
[14]. Padmanabhan, R., Oliveira, M.C. and Menezes, L.F., “Numerical simulation and analysis on the deep drawing of LPG bottles”, Journalof Materials Processing Technology, Vol.200, Issue1-3, pp. 416-423 (2007).
[15]. HUANG, Y. M. and LU, S. C., “Analysis of elliptical cup drawing process of stainless sheet metal”,Transactions of Nonferrous Metals Society of China,Vol.21, Issue. 3, pp.371-377 (2011).
[16]. Wang, W. R., He, C. W., Zhao, Z.H. and Wei, X. C., “The limit drawing ratio and formability prediction of advanced high strengthdual-phase steels”, Materials and Design, Vol.32, Issue 6, pp.3320-3327 (2011).
[17]. 游育儒,銅合金於連續沖模引伸過程分析,碩士論文,國立成功大學機械工程研究所,(2007)。
[18]. Leu, D. K., Chen, T. C. and Huang, Y. M., “Influence of punch shapes on the collar-drawing process of sheet steel”, Journal of Materials Processing Technology, Vol. 88, Issue 1-3, pp. 134-146 (1999).
[19]. Cho, J. R., Moon, S. J. and Kang, S. S., “Finite element investigation on spring- back characteristics in sheet metal U-bending process”, Journal of Materials Processing Technology, Vol.141, Issue 1, pp. 109-116, (2003).
[20]. Jaisingh, A., Narasimhan, K., Date, P. P., Maiti, S. K. and Singh, U. P., “Sensitivity analysis of a deep drawing process for miniaturized products”, Journal of Materials Processing Technology, Vol. 147, Issue 3, pp. 321-327 (2004).
[21]. Morovvati, M. R., Mollaei-Dariani B. and Asadian-Ardakani, M. H., “A theoretical, numerical, and experimantal investigation of plastic wrinkling of circular two-layer sheet metal in the deep drawing”, Journal of Materials Processing Technology, Vol.210, Issue 13, pp. 1738-1747 (2010).
[22]. Huaibao, W., Weili, X., Zhongqin, L., Yuying, Y. and Wang, Z.R., “Stamping and stamping simulation with a blankholder gap”, Journal of Materials Processing Technology, Vol.120, Issue 1-3, pp.62-67 (2002).
[23]. Lovell, M., Higgs, C. F., Deshmukh, P. and Mobley, A., “Increasing formability in sheet metal stamping operations using environmentally friendly lubricants”, Journal of Material Processing Technology, Vol.177, Issue 1-3, pp.87-90 (2006).
[24]. IMAZU, K., KOBAYSHI, T. and KOBAYASHI, A., “ Studies on Draw and Thin Redraw Forming“,日本機械學會論文集,63卷613,pp.3287-3293 (1997).
[25]. Lee, J. H. and Chun, B. S.,“Investigation on the variation of deep drawability of STS304 using FEM simulations”, Journal of Material Processing Technology, Vol.159, Issue 3, pp.389-396 (2005).
[26]. Huang, Y. M. and Chien, K. H., “The formability limitation of the hole-flanging process”, Journal of Materials Processing Technology, Vol.117, Issue 1-2, pp.43-51 (2001).
[27]. Huang, Y. M. and Chien, K. H., “Influence of the punch profile on the limitation of formability in hole-flanging process”, Journal of Materials Processing Technology, Vol.113, Issue 1-3, pp.720-724 (2001).
[28]. Fana, J. P., Tangb, C. Y., Tsuib, C. P., Chanb, L. C. and Lee, T. C.,“3D finite element simulation of deep drawing with damage development”International Journal of Machine Tools & Manufacture, Vol.46 , Issue 9, pp.1035-1044 (2006).
[29]. Parsa, M.H., Yamaguchi, K., Takura, N. and Imatani, S., “ Consideration of the Re-Drawing of Sheet Metal Based on Finite-Element Simulation”, Journal of Materials Processing Technology, Vol.47, Issue 1-2, pp.87-101 (1994).
[30]. Faraji, G., Mashhadi, M. M. and Hashemi, R., “Using the finite element method for achieving an extra high limiting drawing ratio (LDR) of 9 for cylindrical components”, CIRP Journal of Manufacturing Science and Technology, Vol. 3, Issue 4, pp. 262-267 (2010).
[31]. Abdelmaguid, T. F., Abdel-Magied, R. K., Shazly, M. and Wifi, A.S., “A dynamic programming approach for minimizing the number of drawing stages and heat treatments in cylindrical shell multistage deep drawing”, Computers & Industrial Engineering, Vol.66, Issue.3, pp.525–532 (2013).
[32]. Cannizzaro L., Micari, F. and Noto La Diega, S., “ Finite Element Analysis of the Reverse Drawing Process”, J. Mater. Process.Technol., Vol. 24, pp.441-451 (1990).
[33]. Kim, S. H., Kim, S. H. and Huh, H., “ Design Modification in a Multi-Stage Rectangular Cup Drawing Process with a Large Aspect Ratio by an Elasto-Plastic Finite Element Analysis” , Journal of Materials Processing Technology, Vol.113, Issue 1-3, pp.766-773 (2001).
[34]. Altshuller, G., “The 40 Principles” ,Technical Innovation Center, Inc. Worcester, MA (1997).
[35]. 黃志銘,「LED水族燈之結構與散熱改良研究」,國立台灣科技大學機械工程學系,碩士論文 (2012)。
[36]. 黃興彦,「金屬板材U-Bend成形製程之分析」,國立台灣科技大學機械工程學系,碩士論文 (2009)。
[37]. McMeeking, R. M. and Rice, J. R., “ Finite-Element Formulation for Problems of Large Elastic-Plastic Deformation”, Int. J. Solids Struct.,Vol.11, Issue 5, pp.601-616 (1975).
[38]. 卓震,「金屬板材引伸及再引伸成形製程之分析」,國立台灣科技大學機械工程學系,碩士論文 (2010)。
[39]. 陳建宏,「金屬板材平橢圓杯引伸成形製程分析」,國立台灣科技大學機械工程學系,碩士論文 (2013)。
[40]. 康淵、陳信吉,"ANSYS 入門",修訂四版,全華(2007)。

無法下載圖示 全文公開日期 2024/08/20 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE