簡易檢索 / 詳目顯示

研究生: 熊義維
Yi-Wei Xiong
論文名稱: 在亞臨界甲醇下從大豆油除臭餾出物生產脂肪酸甲酯
Producing Fatty Acid Methyl Esters from Soybean Oil Deodorizer Distillate (SODD) under Subcritical Methanol.
指導教授: 吳耀豐
Alchris Woo Go
朱義旭
Yi-Hsu Ju
口試委員: 朱義旭
Yi-Hsu Ju
吳耀豐
Alchris Woo Go
翁玉鑽
Artik Elisa Angkawijaya
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 120
中文關鍵詞: 大豆油除臭餾出物游離脂肪酸亞臨界甲醇脂肪酸甲酯批次反應器
外文關鍵詞: Soybean Oil Deodorized Distillate, Free Fatty Acids, Subcritical Methanol, Fatty Acid Methyl Esters, Batch Reactor
相關次數: 點閱:194下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探索了Soybean Oil Deodorizer Distillate (SODD) 在亞臨界甲醇下的(轉)酯化。SODD是大豆油精煉過程所產生的副產物,其主要成分為脂肪酸(40.62-51.23%)、甘油酯(22-25%)以及不可皂化物(19.81-42.23%)。本研究首先使用亞油酸以及FFAs(游離脂肪酸)+大豆油(SBO)的混合油為原料調查不同參數的影響以及其最佳條件。 參數包括反應器負載(25、5、90%),溶劑與油/脂肪酸比(1.0-0.5 / 1.5-0.15 ml/g),攪拌(0、300 rpm),溫度(~245°C)以及滯留時間(15、30、45、60 and 100 min)。此外也使用水和醋酸(0 - 5.0 vol.%)作為添加劑來調查其對反應的影響。使用4種不同批次的SODD(59.37–77.42 %TFA)在90%的反應器負載,溶劑與游離脂肪酸比為0.5 ml/g, 245°C下攪拌持續100 min實現了87-89%的轉化。由於SODD中含有一些雜質(不可皂化物),因此在本研究中也探索這些雜質的存在對於轉化率的影響。結果表明SODD不需在超臨界甲醇進行反應也能實現不錯的轉化。


    This study explores the (trans)esterification of soybean oil deodorizer distillate (SODD) under subcritical methanol. Soybean oil deodorizer distillate is a by-product of soybean oil refining, and its main components are fatty acids (40.62-51.23%), acylglycerides (22-25%), and unsaponifiable matters (19.81-42.23%). In this study, linoleic acid and fatty acids - soybean oil mixed oil were used as raw materials to investigate the effects of different parameters and their optimal conditions. Parameters investigated including reactor loading (25, 5, 90%), solvent to oil/fatty acid ratio (1.0-0.5 / 1.5-0.15 ml/g), agitation (0, 300 rpm), temperature (30 to 245°C), and retention time (15, 30, 45, 60 and 100 min). Furthermore, water and acetic acid (0 - 5.0 vol.%) were used as additives to investigate their effect on the reaction. Using 4 different batches of SODD (59.37–77.42 % total fatty acid) at the favorable reaction conditions of 90% reactor loading, solvent to free fatty acids ratio of 0.5 ml/g, 245°C with stirring for 100 min, 87-89% of conversion could be achieved. Since SODD contains some impurities (unsaponifiable matters), the effect of these impurities on the conversion was also elucidated in this study. High conversions or yield could be achieved without subjecting the reactant to supercritical conditions.

    摘要 2 ABSTRACT 3 ACKNOWLEDGEMENT 4 TABLE OF CONTENTS 5 LIST OF FIGURES 8 LIST OF TABLES 10 LIST OF ABBREVIATIONS 12 CHAPTER 1 14 1.1. Background of Study 14 1.2. Goal and objective 17 1.3. Significance of the Study 18 1.4. Scope and limitation 19 CHAPTER 2. 21 REVIEW OF RELATED LITERATURE 21 2.1. Soybean oil deodorizer distillate 21 2.1.1 Production and availability 22 2.1.2 Composition 26 2.1.3 Current and possible applications for SODD 29 2.2 Biodiesel synthesis and production 32 2.2.1. Acid-catalyzed (trans)esterification 34 2.2.2. Two-step Acid and base-catalyzed (trans)esterification 35 2.2.3 Enzyme-catalyzed (trans)esterification 36 2.2.4 Non-catalytic (trans)esterification 38 2.3. Additives used in subcritical and supercritical biodiesel production technologies 41 2.3.1 Co-solvents 41 2.3.2 Switchable solvents 42 2.3.3 Organic acids 43 2.3.4 Water 44 CHAPTER 3 52 MATERIALS AND METHODS 52 3.1. Characterization of SODD samples 52 3.1.1. Lipid profile 53 3.1.2. Unsaponifiable matters 54 3.1.3. Total fatty acid content and fatty acid profile by GC 54 3.1.4. Tocopherol, phytosterol, and squalene content by HPLC 55 3.2. Subcritical (trans)esterification 56 3.2.1. Esterification of linoleic acid 58 3.2.2. (Trans)esterification of linoleic acid + soybean oil 58 3.2.3. (Trans)esterification of SODD 59 CHAPTER 4 60 RESULTS AND DISCUSSION 60 4.1. Esterification of linoleic acid 62 4.2. (Trans)esterification of linoleic acid + soybean oil 71 4.3. (Trans)esterification of SODD 81 4.4. Process Comparison and Evaluation 87 CHAPTER 5. 92 CONCLUSIONS 92 REFERENCES 93 APPENDIX A. CONSTANTINOU AND GANI (CG) GROUP CONTRIBUTION METHOD FOR PSEUDO-MOLECULAR STRUCTURES AND LORENTZ-BERTHLOT TYPE MIXING RULE 107 APPENDIX B. THE CALIBRATION CURVE OF GC AND HPLC 110 B.1. Calibration curve for GC 110 B.2. Calibration curve for HPLC 112 APPENDIX C. HEATING CURVE FOR THE REACTION 114 APPENDIX D. ANALYSIS OF VARIANCE (ANOVA) AND T-TEST 118

    [1] BP, Statistical Review of World Energy globally., (2021) 66.
    [2] S. Gunawan, N. Kasim, Y. Ju, Separation and purification of squalene from soybean oil deodorizer distillate, Separation and Purification Technology. 60 (2008) 128–135. https://doi.org/10.1016/j.seppur.2007.08.001.
    [3] L. Wang, W. Du, D. Liu, L. Li, N. Dai, Lipase-catalyzed biodiesel production from soybean oil deodorizer distillate with absorbent present in tert-butanol system, Journal of Molecular Catalysis B: Enzymatic. (2006). https://doi.org/10.1016/j.molcatb.2006.03.005.
    [4] T. Nagao, T. Kobayashi, Y. Hirota, M. Kitano, N. Kishimoto, T. Fujita, Y. Watanabe, Y. Shimada, Improvement of a process for purification of tocopherols and sterols from soybean oil deodorizer distillate, Journal of Molecular Catalysis B: Enzymatic. (2005). https://doi.org/10.1016/j.molcatb.2005.09.005.
    [5] faostat, Production/Yield quantities of Oil, soybean in World, (2021). http://www.fao.org/faostat/en/#search/soybean (accessed August 5, 2021).
    [6] Rina Mariati, Taiwan – A Resilient Market Of Malaysian Palm Oil, Mpoc. (2020). http://mpoc.org.my/taiwan-a-resilient-market-of-malaysian-palm-oil/ (accessed August 5, 2021).
    [7] L.J. Visioli, F. de Castilhos, L. Cardozo-Filho, B.T.F. de Mello, C. da Silva, Production of esters from soybean oil deodorizer distillate in pressurized ethanol, Fuel Processing Technology. 149 (2016) 326–331. https://doi.org/10.1016/j.fuproc.2016.04.038.
    [8] H.G. D’Amato Villardi, M.F. Leal, P.H. De Azevedo Andrade, F.L.P. Pessoa, A.M. Salgado, A.R.G. De Oliveira, Catalytic and non-catalytic esterification of soybean oil deodorizer distillate by ethanol: Kinetic modelling, Chemical Engineering Transactions. 57 (2017) 1999–2004. https://doi.org/10.3303/CET1757334.
    [9] W. Lv, C. Wu, S. Lin, X. Wang, Y. Wang, Integrated Utilization Strategy for Soybean Oil Deodorizer Distillate: Synergically Synthesizing Biodiesel and Recovering Bioactive Compounds by a Combined Enzymatic Process and Molecular Distillation, ACS Omega. 6 (2021) 9141–9152. https://doi.org/10.1021/acsomega.1c00333.
    [10] G.V. Research, Fatty Acid Methyl Ester Market Size, Share & Trends Analysis Report By Application, By Product, Regional Outlook, Competitive Strategies, And Segment Forecasts, 2019 To 2025, (2019). https://www.grandviewresearch.com/industry-analysis/fatty-acid-methyl-ester-market (accessed July 14, 2021).
    [11] X. Yin, X. Duan, Q. You, C. Dai, Z. Tan, X. Zhu, Biodiesel production from soybean oil deodorizer distillate usingcalcined duck eggshell as catalyst, Energy Conversion and Management. 112 (2016) 199–207. https://doi.org/10.1016/j.enconman.2016.01.026.
    [12] M.S. Souza, E.C.G. Aguieiras, M.A.P. Da Silva, M.A.P. Langone, Biodiesel synthesis via esterification of feedstock with high content of free fatty acids, Applied Biochemistry and Biotechnology. 154 (2009) 253–267. https://doi.org/10.1007/s12010-008-8444-4.
    [13] J. Zheng, W. Wei, S. Wang, X. Li, Y. Zhang, Z. Wang, Immobilization of Lipozyme TL 100L for methyl esterification of soybean oil deodorizer distillate, 3 Biotech. 10 (2020) 1–10. https://doi.org/10.1007/s13205-019-2028-6.
    [14] W. Lv, C. Wu, S. Lin, X. Wang, Y. Wang, Integrated Utilization Strategy for Soybean Oil Deodorizer Distillate: Synergically Synthesizing Biodiesel and Recovering Bioactive Compounds by a Combined Enzymatic Process and Molecular Distillation, ACS Omega. 6 (2021) 9141–9152. https://doi.org/10.1021/acsomega.1c00333.
    [15] W. Du, L. Wang, D. Liu, Improved methanol tolerance during Novozym435-mediated methanolysis of SODD for biodiesel production, Green Chemistry. 9 (2007) 173–17. https://doi.org/10.1039/b613704k.
    [16] W. Cao, H. Han, J. Zhang, Preparation of biodiesel from soybean oil using supercritical methanol and co-sol vent, Fuel. 84 (2005) 347–351. https://doi.org/10.1016/j.fuel.2004.10.001.
    [17] H.G. D’Amato Villardi, M.F. Leal, F.L. Pellegrini Pessoa, A.M. Salgado, Synthesis of methyl esters through residual feedstock using acid and free catalyst – Proposal of new reactor, Renewable Energy. 131 (2019) 1146–1155. https://doi.org/10.1016/j.renene.2018.08.037.
    [18] L. Wan, H. Liu, D. Skala, Biodiesel production from soybean oil in subcritical methanol using MnCO3/ZnO as catalyst, Applied Catalysis B: Environmental. 152–153 (2014) 352–359. https://doi.org/10.1016/j.apcatb.2014.01.033.
    [19] J.Z. Yin, Z. Ma, Z.Y. Shang, D.P. Hu, Z.L. Xiu, Biodiesel production from soybean oil transesterification in subcritical methanol with K 3PO 4 as a catalyst, Fuel. 93 (2012) 284–287. https://doi.org/10.1016/j.fuel.2011.11.056.
    [20] J.-Z. Yin, Z. Ma, D.-P. Hu, Z.-L. Xiu, T.-H. Wang, Biodiesel Production from Subcritical Methanol Transesterification of Soybean Oil with Sodium Silicate, (2010). https://doi.org/10.1021/ef100101m.
    [21] S. Saka, D. Kusdiana, Biodiesel fuel from rapeseed oil as prepared in supercritical methanol, Fuel. 80 (2001) 225–231. https://doi.org/10.1016/S0016-2361(00)00083-1.
    [22] H. Imahara, E. Minami, S. Hari, S. Saka, Thermal stability of biodiesel in supercritical methanol, Fuel. (2008). https://doi.org/10.1016/j.fuel.2007.04.003.
    [23] I. Vieitez, C. da Silva, G.R. Borges, F.C. Corazza, J.V. Oliveira, M.A. Grompone, I. Jachmanián, Continuous Production of Soybean Biodiesel in Supercritical Ethanol−Water Mixtures, Energy & Fuels. 22 (2008) 2805–2809. https://doi.org/10.1021/ef800175e.
    [24] D. Kusdiana, S. Saka, Effects of water on biodiesel fuel production by supercritical methanol treatment, Bioresource Technology. 91 (2004) 289–295. https://doi.org/10.1016/S0960-8524(03)00201-3.
    [25] I. Ridwan, N. Katsuragawa, K. Tamura, Process optimization, reaction kinetics, and thermodynamics studies of water addition on supercritical methyl acetate for continuous biodiesel production, The Journal of Supercritical Fluids. 166 (2020) 105038. https://doi.org/10.1016/J.SUPFLU.2020.105038.
    [26] F. Goembira, S. Saka, Effect of additives to supercritical methyl acetate on biodiesel production, Fuel Processing Technology. 125 (2014) 114–118. https://doi.org/10.1016/J.FUPROC.2014.03.035.
    [27] A.W. Go, S. Sutanto, P.L. Tran-Nguyen, S. Ismadji, S. Gunawan, Y.H. Ju, Biodiesel production under subcritical solvent condition using subcritical water treated whole Jatropha curcas seed kernels and possible use of hydrolysates to grow Yarrowia lipolytica, Fuel. 120 (2014) 46–52. https://doi.org/10.1016/J.FUEL.2013.11.066.
    [28] N. Akkarawatkhoosith, A. Kaewchada, A. Jaree, Continuous catalyst-free biodiesel synthesis from rice bran oil fatty acid distillate in a microreactor, Energy Reports. 6 (2020) 545–549. https://doi.org/10.1016/J.EGYR.2019.11.117.
    [29] C.Y. Wei, T.C. Huang, H.H. Chen, Biodiesel production using supercritical methanol with carbon dioxide and acetic acid, Journal of Chemistry. (2013). https://doi.org/10.1155/2013/789594.
    [30] S. Saka, Y. Isayama, Z. Ilham, X. Jiayu, New process for catalyst-free biodiesel production using subcritical acetic acid and supercritical methanol, Fuel. 89 (2010) 1442–1446. https://doi.org/10.1016/J.FUEL.2009.10.018.
    [31] E.R. de Alencar, L.R.D. Faroni, L.A. Peternelli, M.T.C. da Silva, A.R. Costa, Influence of soybean storage conditions on crude oil quality, Revista Brasileira de Engenharia Agrícola e Ambiental. 14 (2010) 303–308. https://doi.org/10.1590/S1415-43662010000300010.
    [32] A. Demarco, V. Gibon, Overview of the soybean process in the crushing industry, OCL. 27 (2020) 60. https://doi.org/10.1051/ocl/2020047.
    [33] C.I. Benites, B.C. Klein, S.M.P.M. Reis, Neutralization of soybean oil deodorizer distillate for vitamin supplement production, International Journal of Chemical Engineering. 2014 (2014). https://doi.org/10.1155/2014/742846.
    [34] R.D. O’Brien, Soybean Oil Purification, Soybeans: Chemistry, Production, Processing, and Utilization. (2008) 377–408. https://doi.org/10.1016/B978-1-893997-64-6.50015-9.
    [35] A. Machinery, Soybean oil refining machine, (2021). http://www.bestoilpressmachines.com/quick-links/soybean-oil-refining-machine.html (accessed August 12, 2021).
    [36] L. Doing Holding Co., What is the difference between physical refining and chemical refining of edible oil?, (2021). https://www.doinggroup.com/index.php?u=show-1733.html (accessed August 15, 2021).
    [37] Shakib Ahmed, Step by Step Soybean Oil Refining Process, Hope My Worlds. (2020). https://hopemyworlds.com/soybean-oil-refining-process/ (accessed August 7, 2021).
    [38] Goyum Screw Press, Soybean Oil Refining Process, Goyum Screw Press. (2021). https://www.oilexpeller.com/soybean-oil-refining-process/.
    [39] National Taxation Bureau of the Southern Area, The usual level of raw material consumption in the oil extraction industry, 2021.
    [40] J.B. Woerfel, Soybean Oil Processing Byproducts and Their Utilization, Practical Handbook of Soybean Processing and Utilization. (1995) 297–313. https://doi.org/10.1016/B978-0-935315-63-9.50021-8.
    [41] R.O.C. Bureau of Energy, Ministry of Economic Affairs, 18 . Diesel Oil Balance Sheet, (2020) 1–2. https://www.moeaboe.gov.tw/ECW/english/content/ContentLink.aspx?menu_id=1540 (accessed February 18, 2022).
    [42] Fatty Acid Methyl Ester Market Size, Share & Trends Analysis Report By Application, By Product, Regional Outlook, Competitive Strategies, And Segment Forecasts, 2019 To 2025, (2019). https://www.grandviewresearch.com/industry-analysis/fatty-acid-methyl-ester-market (accessed October 29, 2021).
    [43] F. Galli, S. Nucci, C. Pirola, C.L. Bianchi, Epoxy methyl soyate as bio-plasticizer: Two different preparation strategies, Chemical Engineering Transactions. 37 (2014) 601–606. https://doi.org/10.3303/CET1437101.
    [44] S. Khatoon, R.G.R. Rajan, A.G.G. Krishna, Physicochemical characteristics and composition of indian soybean oil deodorizer distillate and the recovery of phytosterols, JAOCS, Journal of the American Oil Chemists’ Society. 87 (2010) 321–326. https://doi.org/10.1007/s11746-009-1499-8.
    [45] W. Lv, C. Wu, S. Lin, X. Wang, Y. Wang, Integrated Utilization Strategy for Soybean Oil Deodorizer Distillate: Synergically Synthesizing Biodiesel and Recovering Bioactive Compounds by a Combined Enzymatic Process and Molecular Distillation, ACS Omega. 6 (2021) 9141–9152. https://doi.org/10.1021/acsomega.1c00333.
    [46] S.T.H. Sherazi, S.A. Mahesar, Sirajuddin, Vegetable oil deodorizer distillate: A rich source of the natural bioactive components, Journal of Oleo Science. 65 (2016) 957–966. https://doi.org/10.5650/jos.ess16125.
    [47] X. Gao, R. Zhao, H. Cong, J. Na, Y. Shi, H. Li, X. Li, Reactive distillation toward an ecoefficient process of continuous biodiesel manufacture from waste oil: Pilot-scale experiments and process design, Industrial and Engineering Chemistry Research. 59 (2020) 14935–14946. https://doi.org/10.1021/acs.iecr.0c02343.
    [48] Y. Hirota, T. Nagao, Y. Watanabe, M. Suenaga, S. Nakai, M. Kitano, A. Sugihara, Y. Shimada, Purification of steryl esters from soybean oil deodorizer distillate, JAOCS, Journal of the American Oil Chemists’ Society. 80 (2003) 341–346. https://doi.org/10.1007/s11746-003-0700-6.
    [49] T. Fang, Wahyudiono, B. Al-Duri, Y. Shimoyama, Y. Iwai, M. Sasaki, M. Goto, Supercritical methanol process of modifying oil byproduct for concentrating natural tocopherols, Industrial and Engineering Chemistry Research. 46 (2007) 5325–5332. https://doi.org/10.1021/ie061481j.
    [50] C.F. Torres, G. Torrelo, F.J. Señorans, G. Reglero, A two steps enzymatic procedure to obtain sterol esters, tocopherols and fatty acid ethyl esters from soybean oil deodorizer distillate, Process Biochemistry. 42 (2007) 1335–1341. https://doi.org/10.1016/j.procbio.2007.07.005.
    [51] W. Xu, X. Ma, Y. Wang, Production of squalene by microbes: an update, World Journal of Microbiology and Biotechnology. 32 (2016). https://doi.org/10.1007/s11274-016-2155-8.
    [52] M. Spanova, G. Daum, Squalene - biochemistry, molecular biology, process biotechnology, and applications, European Journal of Lipid Science and Technology. 113 (2011) 1299–1320. https://doi.org/10.1002/ejlt.201100203.
    [53] R. Oliveira, V. Oliveira, K.K. Aracava, C.E.D.C. Rodrigues, Effects of the extraction conditions on the yield and composition of rice bran oil extracted with ethanol - A response surface approach, Food and Bioproducts Processing. (2012). https://doi.org/10.1016/j.fbp.2011.01.004.
    [54] H. Ishizaki, K. Hasumi, Ethanol Production from Biomass, Elsevier, 2013. https://doi.org/10.1016/B978-0-12-404609-2.00010-6.
    [55] Z.R. Huang, Y.K. Lin, J.Y. Fang, Biological and pharmacological activities of squalene and related compounds: Potential uses in cosmetic dermatology, Molecules. 14 (2009) 540–554. https://doi.org/10.3390/molecules14010540.
    [56] Markets and markets, Squalene Market by Source Type (Animal Source (Shark Liver Oil), Vegetable Source (Olive Oil, Palm Oil, Amaranth Oil), Biosynthetic (GM Yeast]), End-use Industry (Cosmetics, Food, and Pharmaceuticals), and Region - Global Forecast to 2025, (2021). https://www.marketsandmarkets.com/Market-Reports/squalene-market-542345.html (accessed October 29, 2021).
    [57] I. Kusumawati, G. Indrayanto, Natural antioxidants in cosmetics, 1st ed., Copyright © 2013 Elsevier B.V. All rights reserved., 2013. https://doi.org/10.1016/B978-0-444-59603-1.00015-1.
    [58] E. Reiter, Q. Jiang, S. Christen, Anti-inflammatory properties of α- and γ-tocopherol, Molecular Aspects of Medicine. 28 (2007) 668–691. https://doi.org/10.1016/j.mam.2007.01.003.
    [59] P. Mathur, Z. Ding, T. Saldeen, J.L. Mehta, Tocopherols in the prevention and treatment of atherosclerosis and related cardiovascular disease, Clinical Cardiology. 38 (2015) 570–576. https://doi.org/10.1002/clc.22422.
    [60] Markets and markets, Mixed Tocopherols Market by Source (Soybean Oil, Rapeseed Oil, Sunflower Oil, and Corn Oil), Function, Compound, Form, Application (Food & Beverage, Feed, Dietary Supplements, Pharmaceuticals, and Cosmetics), and Region - Global Forecast to 2022, (2017). https://www.marketsandmarkets.com/Market-Reports/mixed-tocopherols-market-39668971.html (accessed October 29, 2021).
    [61] R. Tolve, N. Condelli, A. Can, F.L. Tchuenbou-Magaia, Development and Characterization of Phytosterol-Enriched Oil Microcapsules for Foodstuff Application, Food and Bioprocess Technology. 11 (2018) 152–163. https://doi.org/10.1007/s11947-017-1990-4.
    [62] E.J. Booth, Extracting and Refining, in: Rapeseed and Canola Oil: Production, Processing, Properties and Uses, Blackwell Publishing, Oxford, UK, 2004: pp. 17–36.
    [63] A. Kabra, Phytosterols are safe for use in cosmetics and skin care products, Senior Manager Strategic Growth at Matrix Life Science. (2018). https://www.linkedin.com/pulse/phytosterols-safe-use-cosmetics-skin-care-products-anuj-kabra (accessed October 29, 2021).
    [64] Markets and markets, Phytosterols Market by Type (Beta-sitosterol, Campesterol, and Stigmasterol), Application (Food, Pharmaceuticals, Cosmetics, and Feed) & by Region - Global Trends & Forecast to 2020, (2021). https://www.marketsandmarkets.com/Market-Reports/phytosterols-market-223259471.html (accessed October 29, 2021).
    [65] X. Yin, Q. You, H. Ma, C. Dai, H. Zhang, K. Li, Y. Li, Biodiesel production from soybean oil deodorizer distillate enhanced by counter-current pulsed ultrasound, Ultrasonics Sonochemistry. 23 (2015) 53–58. https://doi.org/10.1016/j.ultsonch.2014.08.020.
    [66] The importance of omega-3 and omega-6 fatty acids, Food Facts for Healthy Choices. (2019). https://www.eufic.org/en/whats-in-food/article/the-importance-of-omega-3-and-omega-6-fatty-acids (accessed October 21, 2021).
    [67] A. Ahmad, H. Ahsan, Lipid-based formulations in cosmeceuticals and biopharmaceuticals, Biomedical Dermatology. 4 (2020). https://doi.org/10.1186/s41702-020-00062-9.
    [68] Grandviewresearch, Fatty Acid Methyl Ester Market Size, Share & Trends Analysis Report By Application, By Product, Regional Outlook, Competitive Strategies, And Segment Forecasts, 2019 To 2025, (2019). https://www.grandviewresearch.com/industry-analysis/fatty-acid-methyl-ester-market (accessed October 21, 2021).
    [69] A. Cherepanova, E. Savel’ev, L. Alieva, I. Kuznetsova, V. Sapunov, A New Green Method for the Production Polyvinylchloride Plasticizers from Fatty Acid Methyl Esters of Vegetable Oils, JAOCS, Journal of the American Oil Chemists’ Society. 97 (2020) 1265–1272. https://doi.org/10.1002/aocs.12415.
    [70] Markets and markets, Fatty Acid Methyl Ester (FAME) Market by Type (Soya Methyl Ester, Rapeseed Methyl Ester, Palm Oil Methyl Ester), Application (Fuels, Lubricants, Coatings, Food & Agriculture, Metal Working Fluids), and Region - Global Forecast to 2021, (2017). https://www.marketsandmarkets.com/Market-Reports/fatty-acid-methyl-ester-market-120752897.html (accessed October 29, 2021).
    [71] Tocopherol, PharmaCompass. (2016). https://www.pharmacompass.com/active-pharmaceutical-ingredients/tocopherol (accessed February 11, 2022).
    [72] Squalene, PharmaCompass. (2016). https://www.pharmacompass.com/active-pharmaceutical-ingredients/squalene (accessed February 11, 2022).
    [73] Beta-Sitosterol, PharmaCompass. (2016). https://www.pharmacompass.com/active-pharmaceutical-ingredients/beta-sitosterol (accessed February 11, 2022).
    [74] Stigmasterol, PharmaCompass. (2016). https://www.pharmacompass.com/active-pharmaceutical-ingredients/stigmasterol (accessed February 11, 2022).
    [75] Campesterol, PharmaCompass. (2016). https://www.pharmacompass.com/active-pharmaceutical-ingredients/campesterol (accessed February 11, 2022).
    [76] Oleic Acid Methyl Ester, PharmaCompass. (2016). https://www.pharmacompass.com/active-pharmaceutical-ingredients/oleic-acid-methyl-ester (accessed February 11, 2022).
    [77] Q.-L. Zhu, L.-Y. Zang, L. Zhang, Z. Yun, Two approaches in preparation for cogeneration α-tocopherol and biodiesel from cottonseed, The Canadian Journal of Chemical Engineering. 90 (2012) 171–179. https://doi.org/10.1002/cjce.20540.
    [78] L. Yun, W. Ling, Y. Yunjun, Cogeneration of biodiesel and tocopherols by combining pretreatment with supercritical carbon dioxide extraction from soybean oil deodorizer distillate, Chemistry and Technology of Fuels and Oils. 46 (2010) 79–86. https://doi.org/10.1007/s10553-010-0191-x.
    [79] I.M. Atadashi, M.K. Aroua, A.A. Aziz, Biodiesel separation and purification: A review, Renewable Energy. 36 (2011) 437–443. https://doi.org/10.1016/j.renene.2010.07.019.
    [80] L.S. Oliveira, A.S. Franca, R.R.S. Camargos, V.P. Ferraz, Coffee oil as a potential feedstock for biodiesel production, Bioresource Technology. 99 (2008) 3244–3250. https://doi.org/10.1016/j.biortech.2007.05.074.
    [81] L. Yu, I. Lee, E.G. Hammond, L.A. Johnson, J.H. Van Gerpen, The influence of trace components on the melting point of methyl soyate, JAOCS, Journal of the American Oil Chemists’ Society. 75 (1998) 1821–1824. https://doi.org/10.1007/s11746-998-0337-8.
    [82] F.O. Agunbiade, T.A. Adewole, Methanolysis of Carica papaya Seed Oil for Production of Biodiesel , Journal of Fuels. 2014 (2014) 1–6. https://doi.org/10.1155/2014/904076.
    [83] A. Fröhlich, S. Schober, The Influence of Tocopherols on the Oxidation Stability of Methyl Esters, J Am Oil Chem Soc. 84 (2007) 579–585. https://doi.org/10.1007/s11746-007-1075-z.
    [84] A. Fröhlich, S. Schober, The influence of tocopherols on the oxidation stability of methyl esters, JAOCS, Journal of the American Oil Chemists’ Society. 84 (2007) 579–585. https://doi.org/10.1007/s11746-007-1075-z.
    [85] M. Berrios, R.L. Skelton, Comparison of purification methods for biodiesel, Chemical Engineering Journal. 144 (2008) 459–465. https://doi.org/10.1016/j.cej.2008.07.019.
    [86] I.M. Atadashi, M.K. Aroua, A.A. Aziz, Biodiesel separation and purification: A review, Renewable Energy. 36 (2011) 437–443. https://doi.org/10.1016/j.renene.2010.07.019.
    [87] I.M. Atadashi, M.K. Aroua, A.R.A. Aziz, N.M.N. Sulaiman, Refining technologies for the purification of crude biodiesel, Applied Energy. 88 (2011) 4239–4251. https://doi.org/10.1016/j.apenergy.2011.05.029.
    [88] S.K. Sangar, O.N. Syazwani, M.S.A. Farabi, S.M. Razali, G. Shobhana, S.H. Teo, Y.H. Taufiq-Yap, Effective biodiesel synthesis from palm fatty acid distillate (PFAD)using carbon-based solid acid catalyst derived glycerol, Renewable Energy. 142 (2019) 658–667. https://doi.org/10.1016/j.renene.2019.04.118.
    [89] L.A.S. Do Nascimento, R.S. Angélica, C.E.F. Da Costa, J.R. Zamian, G.N. Da Rocha Filho, Conversion of waste produced by the deodorization of palm oil as feedstock for the production of biodiesel using a catalyst prepared from waste material, Bioresource Technology. 102 (2011) 8314–8317. https://doi.org/10.1016/j.biortech.2011.06.004.
    [90] J.A. Melero, L.F. Bautista, J. Iglesias, G. Morales, R. Sánchez-Vázquez, K. Wilson, A.F. Lee, New insights in the deactivation of sulfonic modified SBA-15 catalysts for biodiesel production from low-grade oleaginous feedstock, Applied Catalysis A: General. 488 (2014) 111–118. https://doi.org/10.1016/j.apcata.2014.09.023.
    [91] N.L. Facioli, D. Barrera-Arellano, Optimización del proceso de esterificación química del destilado de desodorización del aceite de soja previamente saponificado y acidulado, Grasas y Aceites. 53 (2002) 218–225. https://doi.org/10.3989/gya.2002.v53.i2.308.
    [92] I.M. Atadashi, M.K. Aroua, A.R. Abdul Aziz, N.M.N. Sulaiman, The effects of catalysts in biodiesel production: A review, Journal of Industrial and Engineering Chemistry. 19 (2013) 14–26. https://doi.org/10.1016/j.jiec.2012.07.009.
    [93] N. Mathiyazhagan, M., Ganapathi, A., Jaganath, B., Renganayaki, N., & Sasireka, Production of biodiesel from non-edible plant oils having high FFA content, International Journal of Chemical and Environmental Engineering 2.2. (2011).
    [94] N.S. Caetano, V.F.M. Silvaa, T.M. Mata, Valorization of coffee grounds for biodiesel production, Chemical Engineering Transactions. 26 (2012) 267–272. https://doi.org/10.3303/CET1226045.
    [95] C.H. Su, Recoverable and reusable hydrochloric acid used as a homogeneous catalyst for biodiesel production, Applied Energy. 104 (2013) 503–509. https://doi.org/10.1016/j.apenergy.2012.11.026.
    [96] M.I. Al-Widyan, A.O. Al-Shyoukh, Experimental evaluation of the transesterification of waste palm oil into biodiesel, Bioresource Technology. 85 (2002) 253–256. https://doi.org/10.1016/S0960-8524(02)00135-9.
    [97] S. Chongkhong, C. Tongurai, P. Chetpattananondh, Continuous esterification for biodiesel production from palm fatty acid distillate using economical process, Renewable Energy. 34 (2009) 1059–1063. https://doi.org/10.1016/j.renene.2008.07.008.
    [98] E.M. Shahid, Y. Jamal, Production of biodiesel: A technical review, Renewable and Sustainable Energy Reviews. 15 (2011) 4732–4745. https://doi.org/10.1016/j.rser.2011.07.079.
    [99] M. Kouzu, A. Nakagaito, J.S. Hidaka, Pre-esterification of FFA in plant oil transesterified into biodiesel with the help of solid acid catalysis of sulfonated cation-exchange resin, Applied Catalysis A: General. 405 (2011) 36–44. https://doi.org/10.1016/j.apcata.2011.07.026.
    [100] V. Trombettoni, D. Lanari, P. Prinsen, R. Luque, A. Marrocchi, L. Vaccaro, Recent advances in sulfonated resin catalysts for efficient biodiesel and bio-derived additives production, Progress in Energy and Combustion Science. 65 (2018) 136–162. https://doi.org/10.1016/j.pecs.2017.11.001.
    [101] S.Y. Chen, T. Mochizuki, Y. Abe, M. Toba, Y. Yoshimura, Ti-incorporated SBA-15 mesoporous silica as an efficient and robust Lewis solid acid catalyst for the production of high-quality biodiesel fuels, Applied Catalysis B: Environmental. 148–149 (2014) 344–356. https://doi.org/10.1016/j.apcatb.2013.11.009.
    [102] A. Patel, V. Brahmkhatri, Kinetic study of oleic acid esterification over 12-tungstophosphoric acid catalyst anchored to different mesoporous silica supports, Fuel Processing Technology. 113 (2013) 141–149. https://doi.org/10.1016/j.fuproc.2013.03.022.
    [103] A. Abbaszaadeh, B. Ghobadian, M.R. Omidkhah, G. Najafi, Current biodiesel production technologies: A comparative review, Energy Conversion and Management. 63 (2012) 138–148. https://doi.org/10.1016/j.enconman.2012.02.027.
    [104] N.S. Talha, S. Sulaiman, Overview of catalysts in biodiesel production, ARPN Journal of Engineering and Applied Sciences. 11 (2016) 439–442.
    [105] F. Ma, M.A. Hanna, Biodiesel production: a review1Journal Series #12109, Agricultural Research Division, Institute of Agriculture and Natural Resources, University of Nebraska–Lincoln.1, Bioresource Technology. (1999). https://doi.org/10.1016/s0960-8524(99)00025-5.
    [106] D. Kusdiana, S. Saka, Effects of water on biodiesel fuel production by supercritical methanol treatment, Bioresource Technology. (2004). https://doi.org/10.1016/S0960-8524(03)00201-3.
    [107] S.N. Fedosov, J. Brask, A.K. Pedersen, M. Nordblad, J.M. Woodley, X. Xu, Kinetic model of biodiesel production using immobilized lipase Candida antarctica lipase B, Journal of Molecular Catalysis B: Enzymatic. 85–86 (2013) 156–168. https://doi.org/10.1016/j.molcatb.2012.09.011.
    [108] T. Samukawa, M. Kaieda, T. Matsumoto, K. Ban, A. Kondo, Y. Shimada, H. Noda, H. Fukuda, Pretreatment of immobilized Candida antarctica lipase for biodiesel fuel production from plant oil, Journal of Bioscience and Bioengineering. 90 (2000) 180–183. https://doi.org/10.1016/S1389-1723(00)80107-3.
    [109] M.G. Devanesan, T. Viruthagiri, N. Sugumar, Transesterification of Jatropha oil using immobilized Pseudomonas fluorescens, African Journal of Biotechnology. 6 (2007) 2497–2501. https://doi.org/10.5897/ajb2007.000-2396.
    [110] J.-H. Bartha-Vári, M.E. Moisă, L.C. Bencze, F. Irimie, C. Paizs, M.I. Toșa, Efficient Biodiesel Production Catalyzed by Nanobioconjugate of Lipase from Pseudomonas fluorescens, Molecules. 25 (2020) 651. https://doi.org/10.3390/molecules25030651.
    [111] S.H. Duarte, G.L. del Peso Hernández, A. Canet, M.D. Benaiges, F. Maugeri, F. Valero, Enzymatic biodiesel synthesis from yeast oil using immobilized recombinant Rhizopus oryzae lipase, Bioresource Technology. 183 (2015) 175–180. https://doi.org/10.1016/j.biortech.2015.01.133.
    [112] E. Navarro López, A. Robles Medina, P.A. González Moreno, L. Esteban Cerdán, L. Martín Valverde, E. Molina Grima, Biodiesel production from Nannochloropsis gaditana lipids through transesterification catalyzed by Rhizopus oryzae lipase, Bioresource Technology. 203 (2016) 236–244. https://doi.org/10.1016/j.biortech.2015.12.036.
    [113] L.K. dos Santos, R.R. Hatanaka, J.E. de Oliveira, D.L. Flumignan, Production of biodiesel from crude palm oil by a sequential hydrolysis/esterification process using subcritical water, Renewable Energy. 130 (2019) 633–640. https://doi.org/10.1016/j.renene.2018.06.102.
    [114] Y.H. Ju, L.H. Huynh, Y.A. Tsigie, Q.P. Ho, Synthesis of biodiesel in subcritical water and methanol, Fuel. 105 (2013) 266–271. https://doi.org/10.1016/j.fuel.2012.05.061.
    [115] N. Sánchez, J.M. Encinar, G. Martínez, J.F. González, Biodiesel Production from Castor Oil under Subcritical Methanol Conditions, International Journal of Environmental Science and Development. 6 (2015) 61–66. https://doi.org/10.7763/ijesd.2015.v6.562.
    [116] P.D. Patil, V.G. Gude, S. Deng, Transesterification of camelina sativa oil using supercritical and subcritical methanol with cosolvents, Energy and Fuels. 24 (2010) 746–751. https://doi.org/10.1021/ef900854h.
    [117] A. Chatzifragkou, S. Papanikolaou, Effect of impurities in biodiesel-derived waste glycerol on the performance and feasibility of biotechnological processes, Applied Microbiology and Biotechnology. 95 (2012) 13–27. https://doi.org/10.1007/s00253-012-4111-3.
    [118] M. Ayoub, A.Z. Abdullah, Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry, Renewable and Sustainable Energy Reviews. 16 (2012) 2671–2686. https://doi.org/10.1016/j.rser.2012.01.054.
    [119] F. Yang, M.A. Hanna, R. Sun, Value-added uses for crude glycerol--a byproduct of biodiesel production, Biotechnology for Biofuels. 5 (2012) 13. https://doi.org/10.1186/1754-6834-5-13.
    [120] Z. Ilham, S. Saka, Dimethyl carbonate as potential reactant in non-catalytic biodiesel production by supercritical method, Bioresource Technology. 100 (2009) 1793–1796. https://doi.org/10.1016/j.biortech.2008.09.050.
    [121] S. Saka, Y. Isayama, A new process for catalyst-free production of biodiesel using supercritical methyl acetate, Fuel. 88 (2009) 1307–1313. https://doi.org/10.1016/j.fuel.2008.12.028.
    [122] M. Trejda, K. Stawicka, M. Ziolek, New catalysts for biodiesel additives production, Applied Catalysis B: Environmental. 103 (2011) 404–412. https://doi.org/10.1016/j.apcatb.2011.02.003.
    [123] O. Farobie, Y. Matsumura, State of the art of biodiesel production under supercritical conditions, Progress in Energy and Combustion Science. 63 (2017) 173–203. https://doi.org/10.1016/j.pecs.2017.08.001.
    [124] S.M. Ghoreishi, P. Moein, Biodiesel synthesis from waste vegetable oil via transesterification reaction in supercritical methanol, Journal of Supercritical Fluids. 76 (2013) 24–31. https://doi.org/10.1016/j.supflu.2013.01.011.
    [125] O. Farobie, Y. Matsumura, Biodiesel Production in Supercritical Methanol Using a Novel Spiral Reactor, Procedia Environmental Sciences. 28 (2015) 204–213. https://doi.org/10.1016/j.proenv.2015.07.027.
    [126] W. Jiang, H. Zou, C. Fu, J. Lei, H. Lu, B. Liang, Continuous biodiesel production catalyzed by trace-amount alkali under methanol subcritical conditions, Industrial and Engineering Chemistry Research. 53 (2014) 12971–12982. https://doi.org/10.1021/ie501969k.
    [127] T. Tipsri, V. Lersbamrungsuk, Techno-economic analysis of biodiesel production from waste cooking oil using supercritical and subcritical processes, Science, Engineering and Health Studies. 13 (2019) 153–162. https://doi.org/https ://doi.org/10.14456/sehs.2019.16.
    [128] T. Muppaneni, H.K. Reddy, S. Deng, Supercritical Synthesis of Ethyl Esters via Transesterification from Waste Cooking Oil Using a Co-Solvent, Journal of Environmental Protection. 06 (2015) 986–994. https://doi.org/10.4236/jep.2015.69087.
    [129] S. Morais, T.M. Mata, A.A. Martins, G.A. Pinto, C.A.V. Costa, Simulation and life cycle assessment of process design alternatives for biodiesel production from waste vegetable oils, Journal of Cleaner Production. 18 (2010) 1251–1259. https://doi.org/10.1016/j.jclepro.2010.04.014.
    [130] M. Mohadesi, B. Aghel, M. Maleki, A. Ansari, Study of the transesterification of waste cooking oil for the production of biodiesel in a microreactor pilot: The effect of acetone as the co-solvent, Fuel. 273 (2020) 117736. https://doi.org/10.1016/j.fuel.2020.117736.
    [131] N. Akkarawatkhoosith, A. Kaewchada, A. Jaree, Enhancement of continuous supercritical biodiesel production: Influence of co-solvent types, Energy Procedia. 156 (2019) 48–52. https://doi.org/10.1016/j.egypro.2018.11.085.
    [132] S.M. Ghoreishi, P. Moein, Biodiesel synthesis from waste vegetable oil via transesterification reaction in supercritical methanol, Journal of Supercritical Fluids. 76 (2013) 24–31. https://doi.org/10.1016/j.supflu.2013.01.011.
    [133] R. Nikhom, C. Mueanmas, K. Suppalakpanya, Enhancement of Biodiesel production from Palm Fatty acid distillate using Methyl T-Butyl Ether Co-Solvent: Process optimization, International Journal of Renewable Energy Research. 9 (2019) 1319–1327.
    [134] S. Zhang, L. Wang, J. Wang, J. Yang, L. Fu, Z. Cai, Y. Fu, A novel in situ transesterification of yellow horn seeds to biodiesel using a dual function switchable solvent, Fuel. 312 (2022) 122974. https://doi.org/10.1016/j.fuel.2021.122974.
    [135] H.C. Nguyen, M.L. Nguyen, F.-M. Wang, S.-H. Liang, T.L. Bui, H.H. Ha, C.-H. Su, Using switchable solvent as a solvent and catalyst for in situ transesterification of spent coffee grounds for biodiesel synthesis, Bioresource Technology. 289 (2019) 121770. https://doi.org/10.1016/j.biortech.2019.121770.
    [136] P.G. Jessop, D.J. Heldebrant, X. Li, C.A. Eckert, C.L. Liotta, Reversible nonpolar-to-polar solvent, Nature. 436 (2005) 1102–1102. https://doi.org/10.1038/4361102a.
    [137] S. Zeng, C. Tao, R. Parnas, W. Jiang, B. Liang, Y. Liu, H. Lu, Jatropha curcas L. oil extracted by switchable solvent N, N-dimethylcyclohexylamine for biodiesel production, Chinese Journal of Chemical Engineering. 24 (2016) 1640–1646. https://doi.org/10.1016/j.cjche.2016.04.023.
    [138] M. Sultan, S. Alamer, Scholarworks @ UAEU Chemical and Petroleum Engineering Theses using switchable solvents for simultaneous microalgae lipids extraction and biodiesel production, United Arab Emirates University, 2018.
    [139] D. Xue, Y. Mu, Y. Mao, T. Yang, Z. Xiu, Kinetics of DBU-catalyzed transesterification for biodiesel in the DBU-ethanol switchable-polarity solvent, Green Chemistry. 16 (2014) 3218–3223. https://doi.org/10.1039/c4gc00276h.
    [140] U. Alshana, M. Hassan, M. Al-Nidawi, E. Yilmaz, M. Soylak, Switchable-hydrophilicity solvent liquid-liquid microextraction, TrAC Trends in Analytical Chemistry. 131 (2020) 116025. https://doi.org/10.1016/j.trac.2020.116025.
    [141] S.Y. Lee, I. Khoiroh, D.-V.N. Vo, P. Senthil Kumar, P.L. Show, Techniques of lipid extraction from microalgae for biofuel production: a review, Environmental Chemistry Letters. 19 (2021) 231–251. https://doi.org/10.1007/s10311-020-01088-5.
    [142] M. Al-Ameri, S. Al-Zuhair, Using switchable solvents for enhanced, simultaneous microalgae oil extraction-reaction for biodiesel production, Biochemical Engineering Journal. 141 (2019) 217–224. https://doi.org/10.1016/j.bej.2018.10.017.
    [143] A.L. Milliren, J.C. Wissinger, V. Gottumukala, C.A. Schall, Kinetics of soybean oil hydrolysis in subcritical water, Fuel. 108 (2013) 277–281. https://doi.org/10.1016/j.fuel.2012.12.068.
    [144] S. Changi, T. Pinnarat, P.E. Savage, Mechanistic modeling of hydrolysis and esterification for biofuel processes, Industrial and Engineering Chemistry Research. 50 (2011) 12471–12478. https://doi.org/10.1021/ie2013604.
    [145] E. Minami, S. Saka, Kinetics of hydrolysis and methyl esterification for biodiesel production in two-step supercritical methanol process, Fuel. 85 (2006) 2479–2483. https://doi.org/10.1016/j.fuel.2006.04.017.
    [146] A.W. Go, S. Sutanto, B.T. Nguyenthi, L.K. Cabatingan, S. Ismadji, Y.H. Ju, Transesterification of soybean oil with methanol and acetic acid at lower reaction severity under subcritical conditions, Energy Conversion and Management. 88 (2014) 1159–1166. https://doi.org/10.1016/j.enconman.2014.03.014.
    [147] P. Olivares-Carrillo, J. Quesada-Medina, Thermal decomposition of fatty acid chains during the supercritical methanol transesterification of soybean oil to biodiesel, Journal of Supercritical Fluids. 72 (2012) 52–58. https://doi.org/10.1016/j.supflu.2012.08.012.
    [148] E. Minami, S. Saka, Kinetics of hydrolysis and methyl esterification for biodiesel production in two-step supercritical methanol process, Fuel. 85 (2006) 2479–2483. https://doi.org/10.1016/J.FUEL.2006.04.017.
    [149] R.D. Micic, M.D. Tomić, F.E. Kiss, E.B. Nikolić-Djorić, M.D. Simikić, Optimization of hydrolysis in subcritical water as a pretreatment step for biodiesel production by esterification in supercritical methanol, Journal of Supercritical Fluids. 103 (2015) 90–100. https://doi.org/10.1016/j.supflu.2015.04.026.
    [150] K.T. Tan, K.T. Lee, A.R. Mohamed, Effects of free fatty acids, water content and co-solvent on biodiesel production by supercritical methanol reaction, Journal of Supercritical Fluids. 53 (2010) 88–91. https://doi.org/10.1016/j.supflu.2010.01.012.
    [151] J. Liu, Y. Nan, L.L. Tavlarides, Continuous production of ethanol-based biodiesel under subcritical conditions employing trace amount of homogeneous catalysts, Fuel. 193 (2017) 187–196. https://doi.org/10.1016/j.fuel.2016.12.058.
    [152] Y.-H. Ju, L.H. Huynh, Y.A. Tsigie, Q.-P. Ho, Synthesis of biodiesel in subcritical water and methanol, Fuel. 105 (2013) 266–271. https://doi.org/10.1016/j.fuel.2012.05.061.
    [153] A.W. Go, P.L. Tran Nguyen, L.H. Huynh, Y.-T. Liu, S. Sutanto, Y.-H. Ju, Catalyst free esterification of fatty acids with methanol under subcritical condition, Energy. 70 (2014) 393–400. https://doi.org/10.1016/j.energy.2014.04.013.
    [154] S. Espinosa, T. Fornari, S.B. Bottini, E.A. Brignole, Phase equilibria in mixtures of fatty oils and derivatives with near critical fluids using the GC-EOS model, Journal of Supercritical Fluids. 23 (2002) 91–102. https://doi.org/10.1016/S0896-8446(02)00025-6.
    [155] J.P.O. Bruce E. Poling, John M. Prausnitz, The Properties of Gases and Liquids, 5th Edition, 5th ed., McGraw Hill Professional, 2001. https://doi.org/10.1036/0070116822.
    [156] K. Bunyakiat, S. Makmee, R. Sawangkeaw, S. Ngamprasertsith, Continuous production of biodiesel via transesterification from vegetable oils in supercritical methanol, Energy and Fuels. 20 (2006) 812–817. https://doi.org/10.1021/ef050329b.
    [157] Official Methods of Analysis of AOAC International 18th ed., AOCS, 2006.
    [158] S.R. Vali, H.Y. Sheng, Y.-H. Ju, An efficient method for the purification of arachidonic acid from fungal single-cell oil (ARASCO), J Am Oil Chem Soc. 80 (2003) 725–730. https://doi.org/10.1007/s11746-003-0764-3.
    [159] L. Villegas, F. Benavente, V. Sanz-Nebot, J.M. Grases, J. Barbosa, A rapid and simple method for the analysis of bioactive compounds in olive oil refining by-products by liquid chromatography with ultraviolet and mass spectrometry detection, Journal of Food Composition and Analysis. 69 (2018) 107–114. https://doi.org/10.1016/j.jfca.2018.02.013.
    [160] M.F. Mendes, F.L.P. Pessoa, A.M.C. Uller, An economic evaluation based on an experimental study of the vitamin E concentration present in deodorizer distillate of soybean oil using supercritical CO2, The Journal of Supercritical Fluids. 23 (2002) 257–265. https://doi.org/10.1016/S0896-8446(01)00140-1.
    [161] C.F. Torres, G. Torrelo, F.J. Señorans, G. Reglero, A two steps enzymatic procedure to obtain sterol esters, tocopherols and fatty acid ethyl esters from soybean oil deodorizer distillate, Process Biochemistry. (2007). https://doi.org/10.1016/j.procbio.2007.07.005.
    [162] Y. Shimada, S. Nakai, M. Suenaga, A. Sugihara, M. Kitano, Y. Tominaga, Facile purification of tocopherols from soybean oil deodorizer distillate in high yield using lipase, JAOCS, Journal of the American Oil Chemists’ Society. 77 (2000) 1009–1013. https://doi.org/10.1007/s11746-000-0160-z.
    [163] The National Institute of Standards and Technology (NIST), Methyl Alcohol, The National Institute of Standards and Technology (NIST). (2021). https://webbook.nist.gov/cgi/cbook.cgi?ID=C67561&Mask=4 (accessed April 1, 2022).
    [164] J. Ding, B. He, J. Li, Biodiesel Production from Acidified Oils via Supercritical Methanol, Energies (Basel). 4 (2011) 2212–2223. https://doi.org/10.3390/en4122212.
    [165] Y. Liu, E. Lotero, J. Goodwinjr, Effect of carbon chain length on esterification of carboxylic acids with methanol using acid catalysis, Journal of Catalysis. 243 (2006) 221–228. https://doi.org/10.1016/j.jcat.2006.07.013.
    [166] Y. Liu, H. Lu, C. Liu, B. Liang, Solubility Measurement for the Reaction Systems in Pre-Esterification of High Acid Value Jatropha curcas L. Oil, Journal of Chemical & Engineering Data. 54 (2009) 1421–1425. https://doi.org/10.1021/je800604w.
    [167] Y. Liu, H. Lu, W. Jiang, D. Li, S. Liu, B. Liang, Biodiesel Production from Crude Jatropha curcas L. Oil with Trace Acid Catalyst, Chinese Journal of Chemical Engineering. 20 (2012) 740–746. https://doi.org/10.1016/S1004-9541(11)60243-7.
    [168] H.J. Navarro-Díaz, S.L. Gonzalez, B. Irigaray, I. Vieitez, I. Jachmanián, H. Hense, J.V. Oliveira, Macauba oil as an alternative feedstock for biodiesel: Characterization and ester conversion by the supercritical method, The Journal of Supercritical Fluids. 93 (2014) 130–137. https://doi.org/10.1016/j.supflu.2013.11.008.
    [169] T.A. da S. Colonelli, C.P. Trentini, K.A. dos Santos, J.V. de Oliveira, L. Cardozo-Filho, E.A. da Silva, C. da Silva, Assessment of process variables on the use of macauba pulp oil as feedstock for the continuous production of ethyl esters under pressurized conditions, Brazilian Journal of Chemical Engineering. 34 (2017) 831–839. https://doi.org/10.1590/0104-6632.20170343s20150768.
    [170] P. Campanelli, M. Banchero, L. Manna, Synthesis of biodiesel from edible, non-edible and waste cooking oils via supercritical methyl acetate transesterification, Fuel. 89 (2010) 3675–3682. https://doi.org/10.1016/j.fuel.2010.07.033.
    [171] A. Fröhlich, S. Schober, The Influence of Tocopherols on the Oxidation Stability of Methyl Esters, J Am Oil Chem Soc. 84 (2007) 579–585. https://doi.org/10.1007/s11746-007-1075-z.
    [172] G. el Diwani, S. el Rafie, S. Hawash, Protection of biodiesel and oil from degradation by natural antioxidants of Egyptian Jatropha, International Journal of Environmental Science & Technology. 6 (2009) 369–378. https://doi.org/10.1007/BF03326075.
    [173] Y. Liang, C. May, C. Foon, M. Ngan, C. Hock, Y. Basiron, The effect of natural and synthetic antioxidants on the oxidative stability of palm diesel, Fuel. 85 (2006) 867–870. https://doi.org/10.1016/j.fuel.2005.09.003.
    [174] T. Prevc, A. Levart, I. Cigić, J. Salobir, N. Ulrih, B. Cigić, Rapid Estimation of Tocopherol Content in Linseed and Sunflower Oils-Reactivity and Assay, Molecules. 20 (2015) 14777–14790. https://doi.org/10.3390/molecules200814777.
    [175] N. Akkarawatkhoosith, T. Tongtummachat, A. Kaewchada, A. Jaree, Non-catalytic and glycerol-free biodiesel production from rice bran oil fatty acid distillate in a microreactor, Energy Conversion and Management: X. 11 (2021) 100096. https://doi.org/10.1016/j.ecmx.2021.100096.
    [176] D. Yujaroen, M. Goto, M. Sasaki, A. Shotipruk, Esterification of palm fatty acid distillate (PFAD) in supercritical methanol: Effect of hydrolysis on reaction reactivity, Fuel. 88 (2009) 2011–2016. https://doi.org/10.1016/j.fuel.2009.02.040.
    [177] H.J. Cho, S.H. Kim, S.W. Hong, Y.-K. Yeo, A single step non-catalytic esterification of palm fatty acid distillate (PFAD) for biodiesel production, Fuel. 93 (2012) 373–380. https://doi.org/10.1016/j.fuel.2011.08.063.
    [178] I.M. Lokman, M. Goto, U. Rashid, Y.H. Taufiq-Yap, Sub- and supercritical esterification of palm fatty acid distillate with carbohydrate-derived solid acid catalyst, Chemical Engineering Journal. 284 (2016) 872–878. https://doi.org/10.1016/j.cej.2015.08.102.
    [179] O. Nur Syazwani, M. Lokman Ibrahim, Wahyudiono, H. Kanda, M. Goto, Y.H. Taufiq-Yap, Esterification of high free fatty acids in supercritical methanol using sulfated angel wing shells as catalyst, The Journal of Supercritical Fluids. 124 (2017) 1–9. https://doi.org/10.1016/j.supflu.2017.01.002.
    [180] A. Petchmala, N. Laosiripojana, B. Jongsomjit, M. Goto, J. Panpranot, O. Mekasuwandumrong, A. Shotipruk, Transesterification of palm oil and esterification of palm fatty acid in near- and super-critical methanol with SO4–ZrO2 catalysts, Fuel. 89 (2010) 2387–2392. https://doi.org/10.1016/j.fuel.2010.04.010.
    [181] N.A. Akgün, Separation of squalene from olive oil deodorizer distillate using supercritical fluids, European Journal of Lipid Science and Technology. 113 (2011) 1558–1565. https://doi.org/10.1002/ejlt.201000466.
    [182] L.J. Vernier, A.L.B. Nunes, M. Albarello, F. de Castilhos, Continuous Production of Fatty Acid Methyl Esters from Soybean Oil Deodorized Distillate and Methyl Acetate at Supercritical Conditions, The Journal of Supercritical Fluids. (2022) 105603. https://doi.org/10.1016/j.supflu.2022.105603.
    [183] I. Barabas, I.-A. Todoru, Biodiesel Quality, Standards and Properties, Biodiesel- Quality, Emissions and By-Products. (2011). https://doi.org/10.5772/25370.

    無法下載圖示 全文公開日期 2024/07/25 (校內網路)
    全文公開日期 2024/07/25 (校外網路)
    全文公開日期 2024/07/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE