簡易檢索 / 詳目顯示

研究生: 謝尹淳
HSIEH - YIN CHUN
論文名稱: 非鉛鐵電陶瓷系統(100-x)(Bi0.5Na0.5)TiO3-xBaTiO3 之大電致應變機制探討
Investigations on field induced giant strain mechanism in lead-free ferroelectric (100-x)(Bi0.5Na0.5)TiO3-xBaTiO3 system
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 黃育熙
Yu-Hsi Huang
陳宜君
Yi-Chun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 144
中文關鍵詞: 非鉛壓電陶瓷大應變機制穿透式電子顯微鏡壓電力顯微鏡
外文關鍵詞: Lead-free piezoelectric ceramics, giant strain mechanism, a transmission electron microscope, the pressure force microscopy
相關次數: 點閱:285下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  本論文以 (100-x)(Bi0.5Na0.5)TiO3-xBaTiO3,x = 0~12% (簡稱 BNT-xBT) 壓電陶瓷系統,進行巨觀電性 (介電、鐵電、壓電) 之量測,並搭配穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM) 與壓電響應力顯微鏡 (Piezoresponse Force Microscopy, PFM) 分析結果來解釋不同 Ba2+ 含量下物理特性及其微觀電域形貌,並用此方式來比較 MPB 區間和其他區域的不同,找出解釋大應變機制的原因。
  在巨觀電性中發現,隨 Ba2+ 含量添加到 MPB 區間 ( BNT-xBT,x = 6~8%) ,P-E 與 S-E 曲線由本來的標準鐵電材料之 ”矩形” 與 ”蝴蝶” 狀曲線,變成類似反鐵電材料之 “船槳” 狀 P-E 與 “ V “ 狀之 S-E 曲線。另外由 TEM 的檢測中發現在 Pure BNT 晶粒內具有 R3c 對稱結構之片狀電域。但隨 Ba2+ 含量增加至 MPB 區間,開始有中間相 Pnma 相生成,從 PFM 對材料內部進行微區應變量測曲線中也可以看到一個特別的現象,在微觀電性曲線底部開始有曲線分開的現象,會有此現象是由於 Pnma 相生成所導致。隨著 Ba2+ 含量增加至 MPB 區間外 ( BNT-xBT,x = 9~12%), Pnma 相消失並且取而代之是長程層狀 (Lamellar) 的 電域產生,此時材料逐漸變成穩定的正方晶 (Tetragonal) 結構。而在 PFM 中電域形貌的分析中可以看到材料內部長程 Lamellar 電域則開始出現,與 TEM 的結果相同,所以由 TEM 與 PFM 中看到的現象說明,造成此系統會有大應變機制可能是由於中間相 Pnma 相的生成所以才會造成材料內部相變化。
  根據 TEM 分析的結果對相圖中的修正中看到,在未添加 BaTiO3 時是 R3c 的結構,一直到隨著 Ba2+ 含量添加到 3~5% 時開始出現有 P4bm生成;而當 Ba2+ 含量增加到 6~8% 時,除了 R3c 與P4bm 共存之外也開始有造成大應變機制的 Pnma 相開始生成。最後當 Ba2+ 含量提高到 9~12% 時,看到具有 R 相鐵電相的 R3c 結構消失,而淨偶極矩 Pnma 結構也會消失只剩下 T 相鐵電 P4bm 與 P4mm 結構電域穩定生成。
  最後,藉由改變燒結方式,利用微波燒結 BNT-7BT 壓電陶瓷,發現 BNT-7BT 壓電陶瓷除了燒結溫度降低之外,巨觀電性的應變量也大幅提升到 0.4%,而在 PFM 中的電域形貌也可以看的出來 PNRs 較傳統燒結後的結果還要來的明顯,因此證實微波燒結會降低稍結溫度,提高試片密度,並降低材料在燒結果程中 Bi 揮發量,所以造成系統的特性大幅提升。


  In this work, (100-x) (Bi0.5Na0.5) TiO3-x BaTiO3 (abbreviated as BNT-xBT with x = 0 ~12%) were prepared by the oxide mixing route. Macroscopic electrical measurements (dielectric, ferroelectric, piezoelectric) were conducted and an analysis was carried out using TEM(Transmission Electron Microscopy) and PFM(Piezoresponse Force Microscopy) to explain the physical characteristics under different compositions of Ba2+ .
  Macroscopic investigation showed that with Ba2+ compositions near the MPB range (BNT-xBT, x = 6 ~ 8%), P-E and S-E curves change from ferroelectric which are like “square” and “butterfly” shape into anti-ferroelectric that shows “paddle” and “V” shape. Pure BNT grains showed flakes like domain of R3c symmetry from TEM investigation. Intermediate phase Pnma starts to appear as the content of the Ba2+ increased to MPB region. From the PFM data, we can see anti-ferroelectric V-shape and ferroelectric butterfly shapes curves co-exist together. With Ba2+ content increases beyond the MPB region (BNT-xBT, x = 9 ~ 12%), Pnma phase disappeared and is replaced by long-layered (Lamellar) domain and it gradually change to tetragonal structure. TEM analysis showed that before adding BaTiO3 is R3c structure, as the Ba2+ content increases to 3-5% the P4bm starts to appear. When Ba2+ increases 6-8% R3c structure and P4bm co-exist, we also can see Pnma starts appearing which relates to the large strain. Finally, as Ba2+ increases to 9~12% R3c structure in the ferroelectric R-phase disappeared and Pnma phase also disappeared, only T-phase with P4bm and P4mm domain withstand.
  It was confirmed that microwave sintering can reduce the sintering temperature and showed slight improvement in the density of the prepared samples, and reduced the volatility of the Bismuth during the sintering process which improves the overall quality characteristics of the prepared specimens.

第一章 緒論.... 1 1-1 前言.... 1 第二章 文獻回顧與基礎理論....3 2.1 壓電材料系統....3 2.2 含鉛壓電陶瓷材料....4 2.3 無鉛壓電陶瓷材料....5 2.4 (Bi0.5Na0.5)TiO3 晶體結構與物理性質....13 2.5 電域理論....17 2.6 (100-x)(Ba0.5Na0.5)TiO3+ x%BaTiO3 系統之 MPB 文獻回顧 ....20 2.7 BNT 基陶瓷電場誘發大應變機制之文獻回顧....26 2.8 微波燒結實驗目的....41 2.8.1 微波燒結原理....41 第三章 實驗製作與檢測方法....43 3.1 原料 ....43 3.2 材料製備....43 3.3 實驗流程....46 3.4 實驗分析....47 3.4.1 熱分析儀....47 3.4.2 密度量測....47 3.4.3 X-ray繞射儀....48 3.4.4 鐵電遲滯曲線及應變曲線量測....48 3.3.5 壓電響應力顯微鏡....50 第四章 結果與討論....52 4.1 巨觀電性分析....52 4.2 介電性質分析....57 4.3升溫鐵電曲線量測探討溫度相變化 63 4.4利用 TEM 與 PFM 進行電域結構分析並探討造成大應變原因....65 4.5 利用 PFM 的微觀電性量測來佐證 MPB 區間中間相的存在....82 4.6奈米電域與 BNT-xBT 壓電陶瓷系統相結構分佈圖修正....96 4.7 以微波燒結對 BNT-7BT 壓電陶瓷微觀結構的探討....101 第五章 總結....106 第六章 參考文獻....112 第七章 附錄....119 附錄 1、PFM 導電探針規格....119 附錄 2、壓電響應力顯微鏡 (PFM) 介紹....120

1. Wook Jo, Klaus T. P. Seifert, Eva-Maria Anton, and Torsten Granzow,“Perspective on the Development of Lead-free Piezoceramics”,J. Am. Ceram. Soc., 92 [6] 1153–1177 (2009)
2. Goyer RA, “Lead toxicity: current concerns”, Environmental Health Perspectives, 100, 177-87, (1993).
3. YI-QING LU and YONG-XIANG LI, “A REVIEW ON LEAD-FREE PIEZOELECTRIC CERAMICS STUDIES IN CHINA”,Journal of Advanced Dielectrics Vol. 1, No. 3 (2011) 269288
4. 吳朗,電子陶瓷-介電,全欣科技圖書,1994。
5. M. Kimura, A. Ando, T. Sawada, and K. Hayashi, U.S. Patent 6258291, Jul. 10, (2001).
6. M. Kimura, T. Ogawa, and A. Ando, U.S. Patent 6093339, Jul. 25, (2000).
7. 小川弘純、木村雅彥、山口達也、安藤陽,Murata Manufacturing Co., LTD.,中華民國專利 I262512, (2006).
8. 塚田岳夫、東智久、賴廣正和,TDK Co., LTD.,中華民國專利 I261051, (2006).
9. 塚田岳夫、東智久、賴廣正和、剛均,TDK Co., LTD.,中華民國專利200524191, (2005).
10. 澤田拓也、木村雅彥、安藤陽、林宏一,Murata Manufacturing Co., LTD.,中華民國專利469447, (2001).
11. B. Jaffe, W. R. Cook, and H. Jaffe, “Piezoelectric Ceramics,”Academic Press, London and New York (1971).
12. H. F. Kay, and P. Vousden, “Symmetry Change in Barium Titanate at Low Temperature and Their Relation to Its Ferroelectricity Properties,” Phil. Mag., Vol. 40, pp. 1019-1040 (1949).
13. H. Takahashi, Y. Numamoto, J. Tani, and S. Tsurekawa, "Piezoelectric properties of BaTiO3 ceramics with high performancefabricated by microwave sintering," Japanese Journal of Applied Physics, Vol. 45, pp. 7405-7408 (2006).
14. T. Karaki, K. Yan, T. Miyamoto, and M. Adachi, "Lead-free piezoelectric ceramics with large dielectric and piezoelectric constants manufactured from BaTiO3 nano-powder," Japanese Journal of Applied Physics, Vol. 46, pp. L97-L98 (2007).
15. S. Wada, A. Seike, and T. Tsurumi, "Poling treatment and piezoelectric properties of potassium niobate ferroelectric single crystals," Japanese Journal of Applied Physics, Vol. 40, pp. 5690-5697 (2001).
16. R. J. Xie, Y. Akimune, K. Matsuo, T. Sugiyama, N. Hirosaki, and T.Sekiya, "Dielectric and ferroelectric properties of tetragonal tungsten bronze Sr2-xCaxNaNb5O15 (x = 0.05-0.35) ceramics," Applied PhysicsLetters, Vol. 80, No. 5, pp. 835-837 (2002).
17. K.Umakantham, S. Narayana Murty, K. Sambasiva Rao and A.Bhanumathi,"Effect of rare-earth ions on the properties of modified (SrBa)Nb2O6 ceramics," Journal of Materials Science Letters Vol. 6,pp. 565-567 (1987).
18. A. I. Robin, A. V. Prasada Rao, A. R. Sabasiv, "Effect of rare-eath substitution on the dielectric and piezoelectric properties of Ba2AgNb5O15," Ferroelectrics, Vol. 153, pp. 285-290 (1994).
19. M.Kimura, T. Minamikawa, A. Ando, andY. Sakabe, "Temperature characteristics of (Ba1-xSrx)2NaNb5O15 ceramics," Japanese Journal of Applied Physics, Vol. 36, pp. 6051-6054 (1997).
20. Y. Doshida, S. Kishimoto, K. Ishii, H. Kishi, H. Tamura, Y.Tomikawa, and S.Hirose, "Miniature cantilever-type ultrasonic motor using Pb-free multilayer piezoelectric ceramics," Japanese Journal of Applied Physics, Vol. 46, pp. 4921-4925 (2007).
21. M.Villegas, A. C. Caballero, C. Moure, P. Duran, and J. F. Fernandez,"Factors affecting the electrical conductivity of donor-doped Bi4Ti3O12 piezoelectric ceramics," Journal of the American Ceramic Society,Vol. 82, No. 9, pp. 2411-2416 (1999).
22. T. Takeuchi, T. Tani, and Y. Saito, "Piezoelectric properties of bismuth layer-structured ferroelectric ceramics with a preferred orientation processed by the reactive templated grain growth method," Japanese Journal of Applied Physics, Vol. 38, pp. 5553-5556 (1999).
23. M. V. Gelfuso, D. Thomazini, and J. A. Eiras, "Synthesis and structural, ferroelectric, and piezoelectric properties of SrBi4Ti4O15 ceramics," Journal of the American Ceramic Society, Vol. 82, No. 9,pp. 2368-2372 (1999).
24. H. F. Kay, and P. Vousden, “Symmetry Change in Barium Titanate at Low Temperature and Their Relation to Its Ferroelectricity Properties,” Phil. Mag., Vol. 40, pp. 1019-1040 (1949).
25. H. Takahashi, Y. Numamoto, J. Tani, and S. Tsurekawa, "Piezoelectric properties of BaTiO3 ceramics with high performance fabricated by microwave sintering," Japanese Journal of Applied Physics, Vol. 45, pp. 7405-7408 (2006).
26. T. Karaki, K. Yan, T. Miyamoto, and M. Adachi, "Lead-free piezoelectric ceramics with large dielectric and piezoelectric constants manufactured from BaTiO3 nano-powder," Japanese Journal of Applied Physics, Vol. 46, pp. L97-L98 (2007).
27. G. A. Smolensky, V. A. Isupov, A. I. Agranovskaya, and N. N.Krainic, “New ferroelectric of complex composition,” Sov. Phys. Solid State 2, pp. 2651 (1961).
28. T. Takenaka, K.-i. Maruyama, and K. Sakata, "(Bi1/2Na1/2)TiO3 -BaTiO3 system for lead-free piezoelectric ceramics," Japanese Journal of Applied Physics, Vol. 30, pp. 2236-2239 (1991)..
29. R. Wang, R. Xie, T. Sekiya, and Y. Shimojo, "Fabrication and characterization of potassium-sodium niobate piezoelectric ceramicsM by spark-plasma-sintering method," Materials Research Bulletin, Vol. 39, No. 11, pp. 1709-1715 (2004).
30. W. B. Harrison, M. R. B. Hanson, and B. G. Koepke, "Microwave processing and sintering of PZT and PLZT ceramics," Materials Research Society Symposium - Proceedings, Vol. 124, pp. 279–286 (1988).
31. B. Jaffe, R. S. R., and S. Marzullo, "Properties of piezoelectric ceramics in the solid-solution series lead titanate zirconate-lead oxide:tin oxide and lead titanate lead hafnate," J. Res. Natl. Bur. Stad., Vol. 55, pp. 239 (1955).
32. G. H. Haertling, "Properties of hot-pressed ferroelectric alkali niobate ceramics," Journal of the American Ceramic Society, Vol.50, pp. 329. (1967).
33. K. Singh, V. Lingwal, S. C. Bhatt, N. S. Panwar, and B. S. Semwal,"Dielectric properties of potassium sodium niobate mixed system,"Materials Research Bulletin, Vol. 36(13-14), pp. 2365-2374 (2001).
34. M. A. L. Nobre and S. Lanfredi, "Dielectric loss and phase transition of sodium potassium niobate ceramic investigated by impedances pectroscopy," Catalysis Today, Vol. 78[1-4 SPEC.], pp. 529-538 (2003)
35. Shirane, F.J.a.G., "Ferroelectric crystals," Peramon, New York,(1962).
36. M. Kosec and D. Kolar, "On activated sintering and electrical properties of NaKNbO3," Materials Research Bulletin, Vol. 10, No.5, pp. 335-339 (1975).
37. M. Ichiki, L. Zhang, M. Tanaka, and R. Maeda, "Electrical properties of piezoelectric sodium-potassium niobate," Journal of the European Ceramic Society, Vol. 24, No. 6, pp. 1693-1697 (2004).
38. S. Y. Chu, W. Water, Y. D. Juang, and J. T. Liaw, "Properties of (Na,K)NbO3 and (Li, Na, K)NbO3 ceramic mixed systems,"Ferroelectrics, Vol. 287, pp. 23-33 (2003).
39. Y. Guo, K. I. Kakimoto, and H. Ohsato, "Structure and electrical properties of lead-free (Na0.5K0.5)NbO3-BaTiO3 ceramics," Japanese Journal of Applied Physics, Vol. 43, No. 9B, pp. 6662-6666 (2004).

40. R. Wang, R. Xie, T. Sekiya, Y. Shimojo, Y. Akimune, N. Hirosaki, and M. Itoh, "Piezoelectric properties of spark-plasma-sintered (Na0.5K0.5)NbO3-PbTiO3 ceramics," Japanese Journal of Applied Physics, Vol. 41, No. 11B, pp. 7119-7122 (2002).
41. B. Jimenez, L. Pardo, A. Castro, P. Millan, R. Jimenez, M. Elaatmani,and M.Oualla, "Influence of the preparation on the microstructure and ferroelectricity of the (SBN)1-x(BTN)x ceramics," Ferroelectrics, Vol.241, No. 1, pp. 279-286 (2000).
42. H.Yan, C. Li, J. Zhou, W. Zhu, L. He, and Y. Song, "A-site (MCe) substitution effects on the structures and properties of CaBi4Ti4O15 ceramics," Japanese Journal of Applied Physics, Vol. 39 pp. 6339-6342 (2000).
43. R. Jain, A. K. S. Chauhan, V. Gupta, and K. Sreenivas, "Piezoelectric properties of nonstoichiometric Sr1-xBi2+2x3Ta2O9 ceramics," Journal of Applied Physics, Vol. 97, pp. 124101-6 (2005).
44. Y. Makiochi, R. Aoyagi, Y. Hiruma, H. Nagata, and T. Takenakd, "(Bi1/2Na1/2)TiO3-(Bi0.5K0.5)TiO3-BaTiO3 Based Lead-Free Piezoelectric Ceramics," Japanese Journal of Applied Physics, Vol. 44, pp.4350-4353 (2005)
45. J. Suchanicz, “Axial pressure effect on a phase transition nature and ferroelectric properties of single crystal Na0.5Bi0.5TiO3”, J. Phys. Chem. Solids, 62, 1271-1276, (2001).
46. G. O. Jones and P. A. Thomas, “Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3”, Acta Cryst., B58, 168-178, (2002).
47. V. Dorcet and G. Trolliard, “A transmission electron microscopy study of the A-site disordered perovskite Na0.5Bi0.5TiO3”, Acta Materialia, vol. 56, pp. 1753-1761, (2008).
48. G. A. Smolenskii and A. I. Agranovskaya, “Dielectric polarization of a number of complex compounds”, Sov. Phys., Solid State (Engl.Transl.), 1429-1437, (1960).
49. T. Takenaka, K. I. Maruyama, and K. Sakata, “(Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics”, Japanese Journal of Applied Physics, 30, 2236, (1991)
50. D. Rout, K.-S. Moon, and S.-J. L. Kang, "Study of the morphotropic phase boundary in the lead-free Na1/2Bi1/2TiO3-BaTiO3 system by Raman spectroscopy", Journal of the Ceramic Society of Japan, vol. 117, pp. 797-800, (2009).
51. C. Ma, X. Tan, E. Dul'Kin, and M. Roth, “Domain structure-dielectric property relationship in lead-free (1-x)(Bi1/2Na1/2)TiO3- xBaTiO3 ceramics”, Journal of Applied Physics, vol. 108, (2010).
52. J.Yao, and Li Yan,” Evolution of domain structures in Na1/2Bi1/2TiO3 single crystals with BaTiO3”, PHYSICAL REVIEW B 83, 054107, (2011).
53. S.-T. Zhang, A. B. Kounga, E. Aulbach, and Y. Deng, “Temperature-Dependent Electrical Properties of 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 Ceramics”, Journal of the American Ceramic Society, vol. 91, pp. 3950-3954, (2008).
54. Y. Hiruma, Y. Imai, Y. Watanabe, H. Nagata, and T. Takenaka, “Large electrostrain near the phase transition temperature of (Bi0.5Na0.5)TiO3-SrTiO3 ferroelectric ceramics”, Applied Physics Letters, vol. 92, (2008).
55. Y. Hiruma, H. Nagata, and T. Takenaka, “Phase diagrams and electrical properties of (Bi1/2Na1/2)TiO3-based solid solutions”, Journal of Applied Physics, vol. 104, (2008).
56. S. Teranishi, M. Suzuki, Y. Noguchi, M. Miyayama, C. Moriyoshi, Y. Kuroiwa, K. Tawa, and S. Mori, “Giant strain in lead-free (Bi0.5 Na0.5) Ti O3 -based single crystals”, Applied Physics Letters, vol. 92, (2008).
57. K. N. Pham, A. Hussain , C. W. Ahn, I. W. Kim, S. J. Jeong, and J. S. Lee,” Giant strain in Nb-doped Bi0.5(Na0.82K0.18)0.5TiO3 lead-free electromechanical ceramics”, Materials Letters, 64, 2219, (2010).
58. W. Liu, and X. Ren.” Large Piezoelectric Effect in Pb-Free Ceramics”, Physical Review Letters, 103, 257602, (2009).
59. A. Hussain, C. W. Ahn, J. S. Lee, U. Aman, and I. W. Kim,” Large electric-field-induced strain in Zr-modified lead-free Bi0.5(Na0.78K0.22)0.5TiO3 piezoelectric ceramics” Sensors and Actuators A, 158, 84, (2010).
60. Y. Guo, Y. Liu, R. L. Withers, F. Brink, and H. Chen,” Large Electric Field-Induced Strain and Antiferroelectric Behavior in (1-x)(Na0.5Bi0.5)TiO3-xBaTiO3 Ceramics”, Chemistry of Materials, vol. 23, pp. 219-228, (2010).
61. Hugh Simons, John Daniels, and Wook Jo, “Electric-field-induced strain mechanisms in lead-free 94%(Bi1/2Na1/2)TiO3–6%BaTiO3”, Appl. Phys. Lett. 98, 082901, (2011)
62. Z. Xu, X. Dai, and D. Viehland,” Impurity-induced incommensuration in
antiferroelectric La-modified lead zirconate titanate”, Physical Review
Letters, 51, 6261, (1995).
63. Cristina Dragoi, Marin Cerneaa, Lucian Trupinaa,“Lead-free ferroelectric BaTiO3 doped-(Na0.5Bi0.5)TiO3 thin films processed by pulsed laser deposition technique”,Applied Surface Science 257 (2011) 9600– 9605
64. Meredith E. Rogers, Chris M. Fancher, and John E. Blendell,“Domain evolution in lead-free thin film piezoelectric ceramics”,JOURNAL OF APPLIED PHYSICS 112, 052014 (2012)
65. Marin Cerneaa, Lucian Trupinaa, Cristina Dragoi, Bogdan S. Vasile, Roxana Trusca ,“Domain evolution in lead-free thin film piezoelectric ceramics”,JOURNAL OF APPLIED PHYSICS 112, 052014 (2012)

66. Marin Cernea, Lucian Trupina , Cristina Dragoi Aurelian-Catalin Galca , Liliana Trinca ,“Structural, optical, and electric properties of BNT–BT0.08 thin films processed by sol–gel technique”,J Mater Sci (2012)
67. Jianjun Yao, Li Yan, Wenwei Ge, Liang Luo, Jiefang Li, and D. Viehland ,“Evolution of domain structures in Na1/2Bi1/2TiO3 single crystals with BaTiO3”,PHYSICAL REVIEW B 83, 054107 (2011)
68. Robert Dittmer , Wook Jo , Jürgen Rödel , Sergei Kalinin , and Nina Balke,“Nanoscale Insight Into Lead-Free BNT-BT- x KNN”,Adv. Funct. Mater. 2012
69. W. R.Tinga and W. A. G. Voss, “Microwave Power Engineering,”Academic Press, New York (1968).
70. A. J. Berteaud and J. C. Badot, "High temperature microwave heating in refractory materials," Journal of Microwave Power, Vol. 11, No. 4, pp. 315-320 (1976).
71. Z. Xie, J. Yang, and Y. Huang, "Densification and grain growth of alumina by microwave processing," Materials Letters, Vol. 37, No.
72. Z. Xie, J. Yang, and Y. Huang, "Densification and grain growth of alumina by microwave processing," Materials Letters, Vol. 37, No. 4-5, pp. 215-220 (1998).
73. R. D. Blake and T. T. Meek, "Microwave processed composite materials," Journal of Materials Science Letters, Vol. 5, No. 11, pp.1097-1098 (1986).
74. J. D. Katz, R. D. Blake and J. J. Petrovic, “Microwave Sintering of Alumina-Silicon Carbide Composites at 2.45 and 60 GHz,”Ceramics. engineering science processing, Vol. 9, No. 7-8, pp.725-734 (1988).
75. M. C. Valecillos, M. Hirota, M. E. Brito, K. Hirao, and M. Toriyama,
"Microstructure and mechanical properties of microwave sintered
silicon nitride," Journal of the Ceramic Society of Japan, Vol. 106,
No. 12, pp. 1162-1166 (1998).
76. R. Roy, D. Agrawal, J. Cheng and S. Gedevanishvili, Nature, Vol.399, No. 17, pp. 668-670 (1999).
78. R. M. Anklekar, D. K. Agrawal and R. Roy, “Microwave Sintering and Mechanical Properties of PM Copper Steel,” Powder Metallurgy Vol. 44, No. 4, pp. 355-362 (2001).
79. W. H. Sutton, "Microwave processing of ceramic materials,"American Ceramic Society Bulletin, Vol. 68, No. 2, pp. 376-386(1989).
80. M. A. Janney and H. D. Kimrey, “Diffusion-Controlled Processes inn Microwave–Fired OxideCeramic,” Mater. Res. Symp. Proc., Vol.189, pp. 215-227 (1990).
81. M. A. Janney and H. D. Kimrey, “Microwave Sintering of Alumina at 28 GHz,” Ceramic Transactions, Vol. 1(IIB), pp. 919-924 (1998).
82. M. A. Janney, H. D. Kimrey, M. A. Schmidet and J. O. Kiggans, “Grain Growth in Microwave-Annealed Alumina,” Journal of the American Ceramic Society, Vol. 74, No. 4, pp. 1675-1681 (1991).
83. M. A. Janney, C. L. Calhoun, and G. D. Kimery, “Microwave Sintering of Solid Oxide Fuel Cell Materials: I. Zirconia-8mol% Yttria,” Journal of the American Ceramic Society, Vol. 75, No. 2, pp.341-346 (1992).
84. Y. V. Bykov, A. F. L. Goldenberg, and V. A. Flyagin, “The Possibilities of Material Processing by Intense Millimeter-wave Radiation,” in Microwave Processing of Materials II, Materials Research Society Symposium Proceedings, Vol. 189, pp. 41-42(1990)

QR CODE